

Mathematisch-Naturwissenschaftliche Fakultät

Modulhandbuch für

Bachelor of Science "Physik des Erdsystems: Meteorologie – Ozeanographie - Geophysik"

Abschluss: B.Sc.

Stand: 25.02.2025

<u>Inhaltsverzeichnis</u>

nhaltsverzeichnis	2
Module	4
Mathematisch-physikalische Grundlagen	4
math-phys-104e Mathematik für die Physik der Erde I	4
math-phys-204e Mathematik für die Physik der Erde II	
math-phys-304e Mathematik für die Physik der Erde III	
MNF-phys-101 Physik I: Mechanik und Wärmelehre	
MNF-phys-201 Physik II: Elektrizitätslehre und Optik	
MNF-phys-102 Elementare Mathematische Methoden der Physik	
physPdE403 Physikalisches Praktikum für die Physik der Erde 1	
physPdE503 Physikalisches Praktikum für die Physik der Erde 2	
MNF-phys-203 Elektronik und Messtechnik	
MNF-phys-303 Elektronik-Grundpraktikum	24
Fachliche Grundlagen	26
geopEGPH Einführung in die Geophysik Teil 1 und 2	26
pherEM Einführung in die Meteorologie	
pherIPO Introduction to Physical Oceanography	
pherDGL Differentialgleichungen im System Erde	32
Doing Science	34
pherWiss Grundlagen des Wissenschaftlichen Arbeitens	34
pherData Zeitreihen- und Raumdatenanalyse	
pherPraG Messmethoden und Feldpraktikum Geophysik	
pherPraO Messmethoden und Feldpraktikum Ozeanographie	
pherPraM Messmethoden und Feldpraktikum MeteorologiepherProj Semesterprojekt	
pherBPra Berufspraktikum	
pherThes Bachelor Thesis	
Fachliche Vertiefung	50
Geophysik	
geopEGPH03 Geophysik des Systems Erde	
geopAGP01 Gravimetrie und Magnetik	
geopAGP07 Marine Geophysik	
geopAGP03-01a Seismik	
geopAGP02 Geoelektrik-EMI-GPR	58
Meteorologie	60
pherSynop Angewandte Synoptik	60
pherAKphys Atmosphären- und Klimaphysik	
Ozeanographie	64
pherPhysOz Physik des Ozeans	64
pherPhysOza-01a Regionale Ozeanographie	66
pherPhysOzb-01a Ozeanphysik	68
Meteorologie & Ozeanographie	70
pherAOD Atmosphären- und Ozeandynamik	70
pherEMnf-01a Einführung in die Meteorologie für Nebenfächler	
pherIPOnf-01a Introduction to Physical Oceanography for Minors	

bherPraMMM-01a Messmethoden Meteorologie für Nebenfächler	76
oherMMO-01a Messmethoden Ozeanographie für Nebenfächler	. 78

Legende: 13 Sitzungen / Semester (exkl. Prüfung) für die Workloadberechnung zugrunde gelegt

Module

Titel

Mathematisch-physikalische Grundlagen

math-phys-104e Mathematik für die Physik der Erde I Legende: 13 Sitzungen / Semester (exkl. Prüfung) für die Workloadberechnung der Mathematik-Module zugrunde gelegt

Modulcode

11101			Modulcode		
Mathematik für die Physik de	ematik für die Physik der Erde I		math-phys-104e		
Modulverantwortliche/r					
Prof. Dr. Jens Heber					
Veranstalter					
Sektion Mathematik					
Fakultät					
Mathematisch-Naturwissens	chaftliche Fak	ultät			
Prüfungsamt					
Prüfungsamt Mathematik					
Status (P/ WP / W)		P			
Leistungspunkte		9			
Bewertung (benotet/unbeno	tet)	benotet			
Dauer		ein Semester			
Angebotshäufigkeit		Findet nur im Wintersemes	ter statt		
Arbeitsaufwand pro Leistu	naspunkt	30 Stunden			
Arbeitsaufwand insgesamt		270 Stunden			
Präsenzstudium		84 Stunden			
Selbststudium		186 Stunden			
Lehrsprache		Deutsch			
Zugangsvoraussetzung lau	ıt	Icaina			
Prüfungsordnung		keine			
Empfohlene Zugangsvorau	ssetzung*				
Modulveranstaltung(en)					
Lehrveranstaltungsform	Lehrveransta	altungstitel	Pflicht/Wahl	SWS	
Vorlesung	Mathematik fü	ür die Physik der Erde I	Pflicht	4	
Übung	Mathematik fü	ür die Physik der Erde I	Pflicht	2	
Weitere Bemerkungen zu d	er/den			•	
Modulveranstaltung(en)*					
Voraussetzungen für die Zulassung zu der/den Prüfung(en) (Vorleis- tungen)*		Prüfungsvorleistungen sind Fachprüfungsordnung der N §5 der Fachprüfungsordnun 2020/24. Einzelheiten werde bekannt gegeben. Teilnahm	lathematik von 2017 g der Mathematik vo en zu Beginn der Ver	bzw. n anstaltung	

riululig(ell)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahl	Gewicht

	Klausur oder mündlich		benotet	Pflicht	100%
Weitere Bemerkungen zu o Prüfung(en)*	der/den	von m	ır von max. 180 Miı ax. 30 Minuten. Die ırnote gegeben ode g.	e Modulnote ist dur	ch die

Kurzzusammenfassung*

Lehrinhalte

Lineare Algebra

- Logische Grundlagen
- Zahlen, N, Q, R, C
- vollständige Induktion
- Rn, Skalarmultiplikation, Skalarprodukt
- Vektorräume, Basis, Dimension, Basiswechsel
- lineare Abbildungen auf Rn, Cn
- Matrizen
- Determinanten, Entwicklungssatz, lineare Gleichungssysteme

Analysis

- Folgen reeller Zahlen, Konvergenz, Cauchy-Krit.
- Reihen, Konvergenzkriterien, absolute Konvergenz, Exponentialreihe
- Stetigkeit, Differenzierbarkeit in R
- Funktionen
- Grenzwert, Stetigkeit
- Zwischenwertsatz, Maximumssatz
- Umkehrfunktion (Log)
- komplexwertige Funktionen, exp(ix), Eulerformeln
- Differentiation, geom. Interpretation, Produktregel, Quotientenregel, Kettenregel, Ableitung der Umkehrfkt., höhere Ableitungen
- Taylorscher Satz
- Kurvendiskussion, lokale Extrema, Regel von l'Hospital

Lernziele

Die Studierenden haben die Fähigkeit zur Aneignung mathematischer Arbeitsweisen und Beweismethoden erworben. Sie sind in der Lage, sich mathematische Inhalte selbständig zu erarbeiten und mathematische Grundlagen der Physik zu vertiefen. Die Studierenden kennen die Grundkonzepte der Linearen Algebra sowie der Differentialrechnung in einer Veränderlichen.

Literatur

H. Fischer, H. Kaul: Mathematik für Physiker I/II, Teubner, 2005 Weitere Literatur wird in der Vorlesung bekannt gegeben.

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Pflicht	1
Ozeanographie – Geophysik	FIIICH	1

math-phys-204e Mathematik für die Physik der Erde II

Titel	Modulcode
Mathematik für die Physik II	math-phys-204e
Modulverantwortliche/r	·
Prof. Dr. Jens Heber	
Veranstalter	
Sektion Mathematik	
Fakultät	
Mathematisch-Naturwissenschaftliche Fakultät	
Prüfungsamt	
Prüfungsamt Mathematik	
Status (P/M/P/M/)	

Status (P/ WP / W)	P
Leistungspunkte	9
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	Findet nur im Sommersemester statt
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	270 Stunden
Präsenzstudium	84 Stunden
Selbststudium	186 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut	keine
Prüfungsordnung	Refile
Empfohlene Zugangsvoraussetzung*	Kenntnis der Lerninhalte der Module Mathematik für die
Emplomene Zugangsvoraussetzung	Physik der Erde I

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrverans	Lehrveranstaltungstitel		SWS
Vorlesung	Mathematik	für die Physik der Erde II	Pflicht	4
Übung	Mathematik	für die Physik der Erde II	Pflicht	2
Weitere Bemerkungen zu	der/den			•
Modulveranstaltung(en)*				
		Prüfungsvorleistungen sind :	zu erbringen gemäß	§4a der
voraussetzungen für die Zulassung zu der/den Prüfung(en) (Vorleis- tungen)*		Fachprüfungsordnung der M	lathematik von 2017	bzw.
		§5 der Fachprüfungsordnung der Mathematik von		
		2020/24. Einzelheiten werden zu Beginn der Veranstaltung		
		bekannt gegeben. Teilnahme an der Vorlesung und der		
		Übung wird dringend empfol	•	

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahl	Gewicht
Mathematik für die Physik	Klausur oder	benotet	Pflicht	100%
der Erde II	mündlich	penotet	FIIICH	10070

Weitere Bemerkungen zu der/den Prüfung(en)*

Klausur von max. 180 Minuten oder mündliche Prüfung von max. 30 Minuten. Die Modulnote ist durch die Klausurnote gegeben oder die Note der mündlichen Prüfung.

Kurzzusammenfassung*

Lehrinhalte

Integration auf R

- Substitutionsregel, partielle Integration
- Hauptsatz der Differential- und Integralrechnung
- Folgen und Reihen von Funktionen
- Vertauschen von Grenzprozessen

Lineare Algebra

- Eigenwerte, Hauptachsentransformation
- orthogonale und unitäre Matrizen
- quadratische Formen

Differentialrechnung im Rn

- Topologie des Rn
- Konvergenz und Stetigkeit
- Totale und partielle Differenzierbarkeit, Funktionalmatrix, lineare Approximation,

Richtungsableitung

- Taylorscher Satz in Rn
- Lokale Extrema, Hessematrix

Lernziele

Die Studierenden haben die Fähigkeit zur selbständigen Erarbeitung mathematischer Inhalte und der mathematischen Grundlagen der Physik erworben. Die Studierenden haben die Integration in einer Veränderlichen, weiterführende Lineare Algebra, sowie die Differentialrechnung mehrerer Veränderlicher erlernt.

Literatur

H. Fischer, H. Kaul. Mathematik für Physiker I/II, Teubner.

Weitere Literatur wird in der Vorlesung bekannt gegeben.

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Pflicht	2
Ozeanographie - Geophysik	FIIIOIIL	_

math-phys-304e Mathematik für die Physik der Erde III

Titel	Modulcode	
Mathematik für die Physik der Erde III	math-phys-304e	
Modulverantwortliche/r	·	
Prof. Dr. Jens Heber		
Veranstalter		
Sektion Mathematik		
Fakultät		
Mathematisch-Naturwissenschaftliche Fakultät		
Prüfungsamt		
Prüfungsamt Mathematik		

Status (P/ WP / W)	WP
Leistungspunkte	9
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	Findet nur im Wintersemester statt
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	270 Stunden
Präsenzstudium	84 Stunden
Selbststudium	186 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut	keine
Prüfungsordnung	Refile
Empfohlene Zugangsvoraussetzung*	Kenntnis der Lerninhalte der Module Mathematik für die
Emplomene Zugangsvoraussetzung	Physik I und II

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahl	SWS
Vorlesung	Mathematik	für die Physik der Erde III	Pflicht	4
Übung	Mathematik	für die Physik der Erde III	Pflicht	2
Weitere Bemerkungen zu Modulveranstaltung(en)*	der/den	Statt dieses Moduls kann "Theoretische Mechanik" gewählt werden.		
Voraussetzungen für die Zulassung zu der/den Prüfung(en) (Vorleis- tungen)*		Prüfungsvorleistungen sind zu erbringen gemäß §4a der Fachprüfungsordnung der Mathematik von 2017 bzw. §5 der Fachprüfungsordnung der Mathematik von 2020/24. Einzelheiten werden zu Beginn der Veranstaltung bekannt gegeben. Teilnahme an der Vorlesung und der Übung wird dringend empfohlen.		

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahl	Gewicht
Mathematik für die Physik	Klausur oder	benotet	Pflicht	100%
der Erde III	mündlich	penotet	FIIICH	10070

Weitere Bemerkungen zu der/den Prüfung(en)*

Klausur von max. 180 Minuten oder mündliche Prüfung von max. 30 Minuten. Die Modulnote ist durch die Klausurnote gegeben oder die Note der mündlichen Prüfung.

Kurzzusammenfassung*

Lehrinhalte

- Implizite Funktionen, Extremwerte mit Nebenbedingungen, Lagrangemultiplikatoren
- parameterabhängige Integrale
- Integration im Rn
- Integral stetiger Funktionen mit kompaktem Träger
- Mehrfache Integrale, Transformationsformel

Gewöhnliche Differentialgleichungen

- Differentialgleichungen 1. Ordnung, getrennte Variable,
- lineare Differentialgleichungen, homogene Differentialgleichungen, exakte Differentialgleichungen
- Differentialgleichungen 2. Ordnung, Newton-Bewegungsgleichungen, erstes Integral, Umformen in System gekoppelter Differentialgleichungen 1. Ordnung
- Systeme gewöhnlicher Differentialgleichungen 1. Ordnung, Lipschitz-Bedingung, Existenz, Eindeutigkeit, Satz von Picard-Lindelöf
- Inhomogene lineare Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten, Greensche Funktion

Partielle Differentialgleichungen

- Separationsansatz, z.b. Wärmeleitungsgleichung, Wellengleichung, Schrödingergleichung

Lernziele

Die Studierenden haben die Fähigkeit zur selbständigen Erarbeitung mathematischer Inhalte und der mathematischen Grundlagen der Physik erworben. Die Studierenden haben die Integralrechnung in mehreren Veränderlichen sowie Inhalte zu gewöhnlichen und partiellen Differentialgleichungen erlernt.

Literatur

H. Fischer H. Kaul: Mathematik für Physiker I/II, Teubner.

Weitere Literatur wird in der Vorlesung bekannt gegeben.

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie - Ozeanographie - Geophysik	Wahlpflicht	3.

MNF-phys-101 Physik I: Mechanik und Wärmelehre

Legende: 12 Sitzungen / Semester (inkl. Prüfung) für die Workloadberechnung zugrunde gelegt. Es gilt immer die aktuelle Variante, die auf den Internetseiten der Physik unter diesem Link [http://www.physik.uni-kiel.de/de/studium/bama/modulhandbuch-physik-2017-endfassung.pdf] verfügbar ist.

Titel	Modulcode			
Physik I: Mechanik und Wärmelehre	MNF-phys-101			
Modulverantwortliche/r				
Prof. Dr. Michael Bauer				
Veranstalter				
Institut für Experimentelle und Angewandte Physik				
Fakultät				
Mathematisch-Naturwissenschaftliche Fakultät				
Prüfungsamt				
Prüfungsamt Sektion Physik				

Status (P/W)	Pflicht
Leistungspunkte	9
Bewertung (benotet/unbenotet)	benotet
Dauer	1 Semester
Angebotshäufigkeit	Nur im Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	270 Stunden
Präsenzstudium	84 Stunden
Selbststudium	186 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut Prüfungsordnung	keine
Empfohlene Zugangsvoraussetzung*	Detaillierte Kenntnisse der Schulphysik und Schulmathematik

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahl	SWS
Vorlesung	Physik la		Pflicht	2
Vorlesung	Physik Ib		Pflicht	1,5
Vorlesung	Physik Ic		Pflicht	1,5
Übung	Übungen zu	Physik I	Pflicht	2
Weitere Bemerkungen zu der/den Modulveranstaltung(en)*		Die Vorlesung Physik la wird in der ersten Semesterhälfte 4-stündig gelesen, Physik lb und lc werden in der zweiten Hälfte je 3-stündig gelesen. Die Übung findet begleitend während des ganzen Semsters statt.		
Voraussetzungen für die zu der/den Prüfung(en) (V	die Zulassung		•	

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahl	Gewicht

Klausur	Klausur oder mündliche Prü	ifung	Benotet	Pflicht	100%
Weitere Bemerkungen zu der/den		k.A.			

Kurzzusammenfassung*

k.A.

Lehrinhalte

- Physik Ia: Grundlagen der Mechanik, Punktmechanik
 - Kinematik
 - Dynamik, Newtonsche Gesetze
 - Arbeit und Energie
 - Koordinaten- und Bezugssysteme
 - Spezielle Relativitätstheorie
- Physik Ib: Mechanik starrer Körper, Schwingungen und Wellen
 - Dynamik starrer Körper, Rotation
 - Schwingungen
 - Wellen
- Physik Ic: Hydrodynamik und Wärmelehre
 - Hydrostatik und -dynamik, Aerodynamik
 - Kinetische Gastheorie und ideales Gas
 - Temperatur und Wärmeenergie
 - Hauptsätze der Thermodynamik
 - Thermodynamische Potentiale
 - Reale Gase

Lernziele

Die Studierenden kennen die grundlegenden physikalischen Vorgänge der Mechanik und Wärmelehre an Hand von Demonstrationsexperimenten und beherrschen die mathematische Beschreibung physikalischer Gesetze. Sie besitzen eine umfassende Kenntnis der klassischen Physik und ihrer Grenzen in Bezug auf relativistische und Quanteneffekte. In den Übungen haben sie die Sachkompetenz zur Lösung einfacher physikalischer Probleme und soziale Kompetenzen zum Arbeiten in Kleingruppen erworben.

Literatur

Demtröder, Band I; Springer (2015)

Bergmann-Schäfer, Band I; de Gruyter (2008)

Feyman Lectures, Band I; Oldenbourg (2007)

weitere Standardwerke der Physik wie Gerthsen, Tipler, Halliday und Resnik

Weitere Angaben*

k.A.

Verwendbarkeit des Moduls

BSc Physik, BSc/BA Physik (2-Fächer), BSc Physik des Erdsystems

MNF-phys-201 Physik II: Elektrizitätslehre und Optik

Legende: 12 Sitzungen / Semester (inkl. Prüfung) für die Workloadberechnung zugrunde gelegt. Es gilt immer die aktuelle Variante, die auf den Internetseiten der Physik unter diesem Link [http://www.physik.uni-kiel.de/de/studium/bama/modulhandbuch-physik-2017-endfassung.pdf] verfügbar ist.

Titel	Modulcode
Physik II: Elektrizitätslehre und Optik	MNF-phys-201
Modulverantwortliche/r	
Prof. Dr. Robert Wimmer-Schweingruber	
Veranstalter	
Institut für Experimentelle und Angewandte Physik	
Fakultät	
Mathematisch-Naturwissenschaftliche Fakultät	
Prüfungsamt	
Prüfungsamt Sektion Physik	

Status (P/W)	Pflicht
Leistungspunkte	9
Bewertung (benotet/unbenotet)	benotet
Dauer	1 Semester
Angebotshäufigkeit	Nur im Sommersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	270 Stunden
Präsenzstudium	84 Stunden
Selbststudium	186 Stunden

Lehrsprache Deutsch	
Zugangsvoraussetzung laut Prüfungsordnung	keine
Empfohlene Zugangsvoraussetzung*	Kenntnisse des Moduls MNF-phys-101

Modulveranstaltung(en)					
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahl	SWS	
Vorlesung	Physik IIa		Pflicht	2	
Vorlesung	Physik IIb		Pflicht	1,5	
Vorlesung	Physik IIc		Pflicht	1,5	
Übung	Übungen zu	Physik II	Pflicht	2	
,		Die Vorlesung Physik IIa wird in der ersten			
Weitere Bemerkungen zu der/den		Semesterhälfte 4-stündig gelesen, Physik IIb+c werden in			
Modulveranstaltung(en)*		der zweiten Hälfte je 3-stündig gelesen. Die Übungen			
		finden während des ganzen Semesters 2-stündig statt.			
Voraussetzungen für die Zulassung zu der/den Prüfung(en) (Vorleis- tungen)*		In dem Modul werden Prüfungs der Fachprüfungsordnung Phys	0 0	Ū	

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahl	Gewicht

Klausur	Klausur oder mündliche Prüfung	Benotet	Pflicht	100%
Weitere Bemerkungen zu der/den				
Prüfung(en)*				

Kurzzusammenfassung*

k.A.

Lehrinhalte

• Physik IIa Grundlagen der Elektrizitätslehre:

Elektrostatik Magnetostatik zeitlich veränderl. Felder passive Bauelemente Netzwerke

 Physik IIb Elektrodynamik: Maxwell Gleichungen

Schwingungen und Schwingkreise

E.-M. Wellen

Physik IIc Optik:
 Geometrische Optik
 Optische Instrumente
 Beugung und Wellenphänomene
 Fourieroptik

Lernziele

Die Studierenden kennen die grundlegenden physikalischen Vorgänge der Elektrizitätslehre und Optik anhand von experimentellen Demonstrationen und beherrschen die mathematische Beschreibung physikalischer Gesetze. Sie haben dabei eine umfassende Kenntnis der klassischen Physik sowie technischer Anwendungen erworben. In den Übungen haben sie die Sachkompetenz zur Lösung physikalischer Probleme und soziale Kompetenzen durch das Arbeiten in Gruppen vertieft.

Literatur

Demtröder, Band I und II, Springer (2005) Bergmann-Schäfer, Band I, II, und III, de Gruyter (1998-2006) Feynman Lectures, Band I und II, Oldenbourg (2001) weitere Standardwerke der Physik wie Gerthsen, Tipler, Halliday und Resnik, etc.

Weitere Angaben*

k.A.

Verwendbarkeit des Moduls

BSc Physik, BSc/BA Physik (2-Fächer)

MNF-phys-102 Elementare Mathematische Methoden der Physik

Legende: 12 Sitzungen / Semester (inkl. Prüfung) für die Workloadberechnung zugrunde gelegt. Es gilt immer die aktuelle Variante, die auf den Internetseiten der Physik unter diesem Link [http://www.physik.uni-kiel.de/de/studium/bama/modulhandbuch-physik-2017-endfassung.pdf] verfügbar ist.

Titel	Modulcode				
Elementare Mathematische Methoden der Physik	MNF-phys-102				
Modulverantwortliche/r					
Prof. Dr. Wolfgang Duschl					
Veranstalter					
Institut für Theoretische Physik und Astrophysik					
Fakultät					
Mathematisch-Naturwissenschaftliche Fakultät					
Prüfungsamt					
Prüfungsamt Sektion Physik					

Status (P/W)	Pflicht
Leistungspunkte	8
Bewertung (benotet/unbenotet)	unbenotet
Dauer	2 Semester
Angebotshäufigkeit	Beginnt im Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	240 Stunden
Präsenzstudium	120 Stunden
Selbststudium	120 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut Prüfungsordnung	keine
	Detaillierte Kenntnisse der Schulphysik und
Empfohlene Zugangsvoraussetzung*	Schulmathematik; Der Besuch des mathematischen
	Vorkurses vor Semesterbeginn wird empfohlen.

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahl	SWS
Vorlesung		Mathematische Methoden der Wintersemester)	Pflicht	3
Praktische Übung		Elementare Mathematische er Physik I (im Wintersemester)	Pflicht	2
Vorlesung	Elementare Mathematische Methoden der Physik II (im Sommersemster)		Pflicht	3
Praktische Übung	Übungen zu Elementare Mathematische Methoden der Physik II (im Sommersemester)		Pflicht	2
Weitere Bemerkungen zu der/den		Die Vorlesung wird in der ersten Semesterhälfte 4-stündig		
Modulveranstaltung(en)*		gelesen, in der zweiten Hälfte 2-stündig.		
Voraussetzungen für die	Zulassung	ung Die praktischen Übungen sind teilnahmepflichtig.		

zu der/den Prüfung(en) (Vorleis-	
tungen)*	

Prüfung(en)					
Prüfungstitel	Prüfungsfor	m	Bewertung	Pflicht/Wahl	Gewicht
mehrmaliges erfolgreiches Vorrechnen an der Tafel	mündlich		unbenotet	Pflicht	100%
Weitere Bemerkungen zu der/den (1-Fa Prüfung(en)*		auf § 6 der Fachprüfungsordnung Physik (1-Fach) wird verwiesen - auf § 6 Abs. 1 der Fachprüfungsordnung Physik (2-Fächer) wird verwiesen			

Kurzzusammenfassung*

k.A.

Lehrinhalte

Grundlagen der Analysis; Integration; Koordinatensysteme; Vektorrechnung; Komplexe Zahlen; Differentialgleichungen; Fourierreihen und Fouriertransformation; Felder; Raumkurven;

Kurvenintegrale; Flächen- und Volumenintegrale; Integralsätze; Lineare Abbildungen, Matrizen und Tensoren; Lineare Differentialgleichungssysteme; Variationsrechnung

Lernziele

Die Studierenden haben mathematisches Basiswissen als Grundlage für die Grundvorlesungen der Experimentalphysik und der Theoretischen Physik erworben. Sie sind in der Lage, in praktischen, physiknahen Anwendungen einfache Aufgabenstellungen zu lösen.

Literatur

"Mathematik für Physiker und Ingenieure I und II", 17. Auflage, K. Weltner, Springer Spektrum, 2012 (vorbereitend und einführend)

- "Mathematischer Einführungskurs für die Physik", 10. Auflage, S. Großmann, Springer Vieweg, 2012
- "Mathematische Methoden der Physik ", C.B. Lang und N. Pucker, Springer Spektrum 3. Auflage, 2016 (weiterführend)

Weitere Literatur wird bei Bedarf in der Vorlesung angegeben.

Weitere Angaben*

k.A.

Verwendbarkeit des Moduls

BSc Physik, BSc/BA Physik, BSc Physik des Erdsystems

MNF-phys-307 Theoretische Mechanik (Theorie I)

Legende: 12 Sitzungen / Semester (inkl. Prüfung) für die Workloadberechnung zugrunde gelegt. Es gilt immer die aktuelle Variante, die auf den Internetseiten der Physik unter diesem Link [http://www.physik.uni-kiel.de/de/studium/bama/modulhandbuch-physik-2017-endfassung.pdf] verfügbar ist.

Titel	Modulcode
Theoretische Mechanik (Theorie I)	MNF-phys-307
Modulverantwortliche/r	
Prof. Dr. Stefan Heinze	
Veranstalter	
Institut für Theoretische Physik und Astrophysik	
Fakultät	
Mathematisch-Naturwissenschaftliche Fakultät	
Prüfungsamt	
Prüfungsamt Sektion Physik	

Status (P/W)	Pflicht
Leistungspunkte	9
Bewertung (benotet/unbenotet)	benotet
Dauer	1 Semester
Angebotshäufigkeit	Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	270 Stunden
Präsenzstudium	72 Stunden
Selbststudium	198 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut	keine
Prüfungsordnung	Relife
Empfohlene Zugangsvoraussetzung*	

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrveranstaltungstitel		Pflicht/Wahl	sws
Vorlesung	Theoretische	Theoretische Mechanik		4
Übung	Übungen zu	Übungen zu Theoretische Mechanik		2
Weitere Bemerkungen zu der/den Modulveranstaltung(en)*		k.A.		
-u day/day Driftung(an) (Variais		erfolgreiche Lösung der Übung von Lösungen in den Übungen Fachprüfungsordnung Physik (auf §6 der	

Prüfung(en)					
Prüfungstitel	Prüfungsfori	m	Bewertung	Pflicht/Wahl	Gewicht
Modulprüfung	Klausur oder mündliche Pr	üfung	benotet	Pflicht	100%
Weitere Bemerkungen zu der/den Prüfung(en)*		k.A.			

Kurzzusammenfassung*

k.A.

Lehrinhalte

- Newton'sche Mechanik
 - Kinematik und Punktmechanik
 - Erhaltungssätze
 - Gravitation und Planetenbewegung
 - Bezugssystem
 - Differentieller Streuguerschnitt
- Lagrange'sche Mechanik:
 - Bewegung unter Zwangsbedingungen
 - Lagrange Gleichungen erster und zweiter Art
 - Noether'sches Theorem
 - Variationsrechnung
- Hamilton'sche Mechanik:
 - Hamilton'sche Bewegungsgleichung
 - kanonische Transformation
 - Hamilton-Jacobi-Gleichung
 - Starrer Körper und Kreiselbewegung
 - Wirkungs-Winkelvariable

Lernziele

Die Studierenden haben Basiswissen im Bereich der Theoretischen Mechanik als Grundlage für die Quantenmechanik und die Statistische Mechanik erworben. Sie haben am Beispiel der Mechanik erkannt, dass mit mathematischen Methoden physikalische Prozesse so beschrieben werden können, dass experimentell nachprüfbare quantitative Vorhersagen möglich sind.

Literatur

- (1) T. Fließbach: Mechanik, Spektrum Verlag
- (2) P. Noltig: Grundkurs Theoretische Physik, Bd. I, Klassische Mechanik, Springer Verlag
- (3) J. Honerkamp, H. Römer: Grundlagen der klassischen Theoretischen Physik, Springer Verlag
- (4) Landau, Lifschitz: Lehrbuch der Theoretischen Physik I, Mechanik, Akademie Verlag
- (5) H. Goldstein: Klassische Mechanik, Akad. Verlagsgesellschaft, Frankfurt
- (6) H. G. Schuster: Deterministisches Chaos, VCH-Wiley
- (7) J. V. Jose, E. J. Saletan: Classical Dynamics A Contemporary Approach, Cambridge Univ. Press

Weitere Angaben*

k.A.

Verwendbarkeit des Moduls

BSc Physik, BSc Physik des Erdsystems

physPdE403 Physikalisches Praktikum für die Physik der Erde 1

Titel	Modulcode
Physikalisches Praktikum für die Physik der Erde 1	physPdE403
Modulverantwortliche/r	
Dr. Victor de Manuel Gonzalez	
Veranstalter	
Institut für Experimentelle und Angewandte Physik	
Fakultät	
Mathematisch-Naturwissenschaftliche Fakultät	
Prüfungsamt	
Prüfungsamt Sektion Physik	

Status (P / W)	Pflicht
Leistungspunkte	6
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	jedes Semester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	180 Stunden
Präsenzstudium	65 Stunden
Selbststudium	115 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut Prüfungsordnung	phys-101 (Physik I), phys-201 (Physik II)
Empfohlene Zugangsvoraussetzung*	k.A.

Modulveranstaltung(en)					
Lehrveranstaltungsform	Lehrveranst	altungstitel	Pflicht/Wahl	sws	
Praktikum	Physikalische	Physikalisches Praktikum für PdE 1		4	
Begleitseminar	Proseminar F	Proseminar Praktikum für PdE 1		1	
Weitere Bemerkungen zu der/den Modulveranstaltung(en)*		Ct-tt di M-dul- h-mhDdF502			
		Statt dieses Moduls kann physPdE503 gewählt werden			
zu der/den Prütung(en) (Vorleis-		- auf § 6 der Fachprüfungsordnu	ına Physik (1 ₋ Fa	ch) wird	
		verwiesen			
		V CI VVICSCII			

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahl	Gewicht
Praktikum	Testate	Unbenotet	Pflicht	0%
Mündliche Prüfgespräche	Mündliche Prüfung	Benotet	Pflicht	100%

Weitere Bemerkungen zu der/den Prüfung(en)*

Das Modul ist bestanden, wenn alle Testate zu den Praktikumsprotokollen erlangt wurden sowie die mündlichen Prüfgespräche im Rahmen des Begleitseminars erfolgreich absolviert wurden. Die Note ist durch die Note der Prüfgespräche gegeben. Fehlen maximal zwei Testate, so ist für das Bestehen des Moduls eine zusätzliche mündliche Prüfung als Prüfungsleistung erforderlich. Fehlen mehr als zwei Testate, ist das Modul nicht bestanden.

Kurzzusammenfassung*

kΑ

Lehrinhalte

Versuche aus den Gebieten Optik, Wärmelehre und Atomphysik

Lernziele

Die Studierenden vertiefen in den Gebieten der Optik, der Wärmelehre und der Atomphysik ihre Kenntnisse in der praktischen Versuchsdurchführung und sind in der Lage, bisher erworbenes theoretisches Wissen anzuwenden, Versuche eigenständig durchzuführen, ausführlich zu protokollieren und eine quantitative Fehlerbewertung zu erstellen. Des Weiteren sind die Studierenden in der Lage, die physikalischen Sachverhalte und die Versuchsdurchführung im Rahmen des Begleitseminars darzustellen.

Literatur

Detaillierte Versuchsanleitungen mit Literaturangaben

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester	
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	 Wahlpflicht	4	
Ozeanographie - Geophysik	VVariipilicrit	4	

physPdE503 Physikalisches Praktikum für die Physik der Erde 2

Titel	Modulcode	
Physikalisches Praktikum für die Physik der Erde 2	physPdE503	
Modulverantwortliche/r		
Dr. Victor de Manuel Gonzalez		
Veranstalter		
Institut für Experimentelle und Angewandte Physik		
Fakultät		
Mathematisch-Naturwissenschaftliche Fakultät		
Prüfungsamt		
Prüfungsamt Sektion Physik		

Status (P/WP/W)	WP
Leistungspunkte	6
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	jedes Semester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	180 Stunden
Präsenzstudium	65 Stunden
Selbststudium	115 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut	phys-101 (Physik I), phys-201 (Physik II)
Prüfungsordnung	priys-101 (Friysik I), priys-201 (Friysik II)
Empfohlene Zugangsvoraussetzung*	k.A.

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrveranstaltungstitel		Pflicht/Wahl	SWS
Praktikum	Physikalische	Physikalisches Praktikum für PdE 2		4
Begleitseminar	Proseminar F	Proseminar Praktikum für PdE 2		1
Weitere Bemerkungen zu der/den		Statt dieses Moduls kann physPdE403 gewählt werden		
Modulveranstaltung(en)*				
zu der/den Prutung(en) (Vorleis-		- auf § 6 der Fachprüfungsordnu verwiesen	ng Physik (1-Fa	ch) wird

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahl	Gewicht
Praktikum	Testate	Unbenotet	Pflicht	0%
Mündliche Prüfgespräche	Mündliche Prüfung	Benotet	Pflicht	100%

Weitere Bemerkungen zu der/den Prüfung(en)*

Das Modul ist bestanden, wenn alle Testate zu den Praktikumsprotokollen erlangt wurden sowie die mündlichen Prüfgespräche im Rahmen des Begleitseminars erfolgreich absolviert wurden. Die Note ist durch die Note der Prüfgespräche gegeben. Fehlen maximal zwei Testate, so ist für das Bestehen des Moduls eine zusätzliche mündliche Prüfung als Prüfungsleistung erforderlich. Fehlen mehr als zwei Testate, ist das Modul nicht bestanden.

Kurzzusammenfassung*

k.A

Lehrinhalte

Versuche aus den Gebieten Mechanik, Elektrizitätslehre und Physik mit dem Computer

Lernziele

Die Studierenden vertiefen in den Gebieten der Mechanik, der Elektrizitätslehre und der Physik mit dem Computer ihre Kenntnisse in der praktischen Versuchsdurchführung und sind in der Lage, bisher erworbenes theoretisches Wissen anzuwenden, Versuche eigenständig durchzuführen, ausführlich zu protokollieren und eine quantitative Fehlerbewertung zu erstellen. Des Weiteren sind die Studierenden in der Lage, die physikalischen Sachverhalte und die Versuchsdurchführung im Rahmen des Begleitseminars darzustellen.

Literatur

Detaillierte Versuchsanleitungen mit Literaturangaben

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie - Ozeanographie - Geophysik	Wahlpflicht	4.

MNF-phys-203 Elektronik und Messtechnik

Legende: 12 Sitzungen / Semester (inkl. Prüfung) für die Workloadberechnung zugrunde gelegt. Es gilt immer die aktuelle Variante, die auf den Internetseiten der Physik unter diesem Link [http://www.physik.uni-kiel.de/de/studium/bama/modulhandbuch-physik-2017-endfassung.pdf] verfügbar ist.

Titel	Modulcode	
Elektronik und Messtechnik	MNF-phys-203	
Modulverantwortliche/r		
Prof. Dr. Dietmar Block		
Veranstalter		
Institut für Experimentelle und Angewandte Physik		
Fakultät		
Mathematisch-Naturwissenschaftliche Fakultät		
Prüfungsamt		
Prüfungsamt Sektion Physik		

Status (P/W)	Pflicht
Leistungspunkte	4
Bewertung (benotet/unbenotet)	benotet
Dauer	1 Semester
Angebotshäufigkeit	Sommersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	120 Stunden
Präsenzstudium	36 Stunden
Selbststudium	84 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut Prüfungsordnung	phys-203 (Elektronik und Messtechnik)
Empfohlene Zugangsvoraussetzung*	k.A.

Modulveranstaltung(en)					
Lehrveranstaltungsform	Lehrveranstaltungstitel		Pflicht/Wahl	SWS	
Vorlesung	Einführung i	n die Elektronik	Pflicht	1	
Praktische Übung	Laborübung	Laborübungen zur Messtechnik		2	
Weitere Bemerkungen zu der/den		Die Vorlesung wird nur in der zweiten Semesterhälfte (2-			
Modulveranstaltung(en)*		stündig) gehalten.			
Voraussetzungen für die Zulassung					
zu der/den Prüfung(en) (Vorleis-		Die praktische Übung ist teiln	ahmepflichtig.		
tungen)*					

Prüfung(en)					
Prüfungstitel	Prüfungsform		Bewertung	Pflicht/Wahl	Gewicht
Modulprüfung	Klausur oder mündliche Prüfung		benotet	Pflicht	100%
Weitere Bemerkungen zu der/den Prüfung(en)*		k.A.			

Kurzzusammenfassung*

k.A.

Lehrinhalte

Bauelemente, Grundschaltungen und Messmethoden der Analogelektronik; Passive Bauelemente, Netzwerke, passive Filter; Transistoren, Verstärkerschaltungen, Operationsverstärker; Elementare Bauelemente und Schaltungen der Digitaltechnik; Fehlerrechnung und methodische Versuchsdurchführung

Lernziele

Die Studierenden besitzen einen systematischen Überblick über die Grundlagen der Analog- und Digitalelektronik. In einer begleitenden Übung haben sie unter Anleitung den praktischen Umgang mit modernen Messmethoden, insbesondere Funktionsgenerator und Digitaloszilloskop erlernt. Sie besitzen Kompetenzen in der Durchführung und Bewertung von Messungen. Sie vertiefen den Vorlesungsstoff durch Beispiele, die für nachfolgende Module grundlegend sind.

Literatur (Liste oder Hinweis darauf, wo man sie findet)

Hering-Bressler-Gutekunst: Elektronik für Ingenieure und Naturwissenschaftler, Springer, 6. Auflage (erhältlich durch UB als ebook)

Weitere Angaben*

Das Modul ist u. a. Zugangsvoraussetzung für folgende Module:

- MNF-phys-303 (Elektronik-Grundpraktikum)
- MNF-phys-303 (Elektronik-Grundpraktikum für PEMOG)
- MNF-phys-403 (Physikalisches Grundpraktikum Teil 1)
- MNF-phys-503 (Physikalisches Grundpraktikum Teil 2)

Verwendbarkeit des Moduls

BSc Physik, BSc Physik des Erdsystems

MNF-phys-303 Elektronik-Grundpraktikum

Legende: 12 Sitzungen / Semester (inkl. Prüfung) für die Workloadberechnung zugrunde gelegt. Es gilt immer die aktuelle Variante, die auf den Internetseiten der Physik unter diesem Link [http://www.physik.uni-kiel.de/de/studium/bama/modulhandbuch-physik-2017-endfassung.pdf] verfügbar ist.

Titel	Modulcode	
Elektronik-Grundpraktikum	MNF-phys-303	
Modulverantwortliche/r		
Prof. Dr. Dietmar Block		
Veranstalter		
Institut für Experimentelle und Angewandte Physik		
Fakultät		
Mathematisch-Naturwissenschaftliche Fakultät		
Prüfungsamt		
Prüfungsamt Sektion Physik		

Status (P/W)	Pflicht
Leistungspunkte	5
Bewertung (benotet/unbenotet)	unbenotet
Dauer	1 Semester
Angebotshäufigkeit	Jedes Semester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	150 Stunden
Präsenzstudium	36 Stunden
Selbststudium	114 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut Prüfungsordnung	phys-203 (Elektronik und Messtechnik)
Empfohlene Zugangsvoraussetzung*	k.A.

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrverans	Lehrveranstaltungstitel		SWS
Praktikum	Elektronik-Grundpraktikum		Pflicht	3
Begleitseminar	Begleitseminar Elektronik-Grundpraktikum		Pflicht	1
Weitere Bemerkungen zu der/den		k.A.		
Modulveranstaltung(en)*		K.A.		
Voraussetzungen für die Zulassung				
zu der/den Prüfung(en) (Vorleis-		Das Modul ist teilnahmepflichtig.		
tungen)*				

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahl	Gewicht
Praktikum	Testate	unbenotet	Pflicht	0%
Mündliche Prüfgespräche	Mündl. Prüfung	unbenotet	Pflicht	100%

Weitere Bemerkungen zu der/den Prüfung(en)*

Das Modul ist bestanden, wenn alle Testate zu den Praktikumsprotokollen erlangt wurden sowie die mündlichen Prüfgespräche im Rahmen des Begleitseminars erfolgreich absolviert wurden. Fehlen maximal zwei Testate, so ist für das Bestehen des Moduls eine zusätzliche mündliche Prüfung als Prüfungsleistung erforderlich. Fehlen mehr als zwei Testate, ist das Modul nicht bestanden.

Kurzzusammenfassung*

k.A.

Lehrinhalte

Selbständiger Aufbau von Schaltungen der Analog- und Digitalelektronik; Untersuchung der Schaltungen mit Digitalvoltmeter, Funktionsgenerator und Digitaloszilloskop; Zu den Themen gehören: Passive Netzwerke, passive Filter; Transistoren, Verstärkerschaltungen, Operationsverstärker; Digitalschaltungen

Lernziele

Die Studierenden haben den praktischen Umgang mit dem Aufbau von einfachen Schaltungen der Analog- und Digitalelektronik sowie der systematischen Durchführung von Messungen und der Fehlersuche an diesen Schaltungen gelernt. Sie können umfangreiche Messkurven mit modernen Messgeräten aufnehmen und ihre Daten unter Verwendung von Computerprogrammen auswerten. Sie beherrschen die Grundlagen der Fehlerrechnung. Die Studierenden besitzen Kompetenzen in der Darstellung der Messungen in aussagekräftigen Versuchsprotokollen und in der Bewertung der erhaltenen Ergebnisse.

Literatur

Hering-Bressler-Gutekunst: Elektronik für Ingenieure und Naturwissenschaftler, Springer, 6. Auflage (erhältlich durch UB als ebook)

Weitere Angaben*

k.A.

Verwendbarkeit des Moduls

BSc Physik

Fachliche Grundlagen

geopEGPH Einführung in die Geophysik Teil 1 und 2

Titel	Modulcode
Einführung in die Geophysik Teil 1 und 2	geopEGPH
Modulverantwortliche/r	·
Dr. Dennis Wilken,	
Prof. Dr. Heidrun Kopp	
Veranstalter	
Institut für Geowissenschaften	
Fakultät	
Mathematisch-Naturwissenschaftliche Fakultät	
Prüfungsamt	
Prüfungsamt Geographie und Geowissenschaften	
Status (P / WP / W)	
Loietungenunkto 6	·

Status (P / WP / W)	Р
Leistungspunkte	6
Bewertung (benotet/unbenotet)	benotet
Dauer	zwei Semester
Angebotshäufigkeit	alle zwei Semester, im Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	180 Stunden
Präsenzstudium	26 Stunden (Teil 1), 52 Stunden (Teil 2)
Selbststudium	102 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut	keine
Prüfungsordnung	
Empfohlene Zugangsvoraussetzung*	Kenntnisse der Mathematik und Physik im Umfang der entsprechenden Einführungsmodule

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahlpflicht/Wahl	sws
Vorlesung	Einführung i	in die Geophysik I	Pflicht	2
Vorlesung	Einführung i	in die Geophysik II	Pflicht	2
Praktische Übung	Einführung	in die Geophysik	Pflicht	2
Weitere Bemerkungen zu	der/den		•	•
Modulveranstaltung(en)*				
zu der/den Prufung(en)		Erfolgroiche Durchfüh	rung dar Praktischen Übungen	hologt
		Erfolgreiche Durchführung der Praktischen Übungen, belegt durch die Praktikumsprotokolle		

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Einführung in die Geophysik	mündl. Prüfung	Benoted	Pflicht	100%
Weitere Bemerkungen Prüfung(en)*	zu der/den			

Kurzzusamı	mentassung*
------------	-------------

Einführung in die Methoden der geophysikalischen Prospektion

Lehrinhalte

Grundlagen zum physikalischen Aufbau der Erde werden vermittelt, sowie zur Dynamik des Planeten und seinen Potenzialfeldern:

- I. Entstehung und Aufbau der Erde
- II. Potenzialfelder der Erde
- III. Erdbeben und seismische Wellenfelder
- IV. Geodynamische Prozesse und Plattentektonik
- V. Grundlagen geophysikalischer Prospektionsmethoden

Es wird eine Einführung in die Grundlagen und Anwendungen der geophysikalischen Feldmessmethoden gegeben, die zur Erkundung der Erdkruste, insbesondere des oberflächennahen Bereichs und der Reservoire der Oberkruste, eingesetzt werden. In Vorlesungen, exemplarischen Feldmessungen und Auswerteübungen wird ein Überblick über die folgenden Messund Auswerteverfahren gegeben:

Gravimetrie

Magnetik

Gleichstrom-Geoelektrik

Ground Penetrating Radar / EMI

Seismik

Die Mess- und Auswerteübungen sind unbenotet, bilden jedoch die Voraussetzung für die Teilnahme an der benoteten Abschlussprüfung.

Lernziele

Die Studierenden erlangen Fachkenntnisse über den physikalischen Aufbau der Erde und die grundlegenden geodynamischen Prozesse. Sie können geophysikalische Feldmessmethoden, die zur Erkundung des Erdinneren eingesetzt werden, beschreiben und zur Lösung einfacher geologischer Fragestellungen durchführen und auswerten sowie die Ergebnisse in Messprotokollen darstellen.

Literatur

Dahm, T.: Grundlagen der Geophysik: Lecture Notes, 2015, Potsdam, 332 S.

http://doi.org/10.2312/GFZ.2.1.2015.001

Clauser, C.: Einführung in die Geophysik, 2013, Springer

Götze, Mertmann, Riller, Arndt: Einführung in die Geowissenschaften, 2015, utb

Grotzinger, Jordan, Press and Siever: Allgemeine Geologie, 2016, Springer

Kearey, P., M. Brooks und I. Hill (2002): An introduction to geophysical exploration (3nd edition).

Blackwell Sc. Publ., Oxford

Knödel, K., H. Krummel und G. Lange (eds.)(1997): Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten Band 3: Geophysik. Springer Verlag, Berlin.

Lowrie, W.: Fundamentals of Geophysics, 2009, Cambridge University Press

Stacey, F. and Davis, P.: Physics of the Earth, 2008, Cambridge University Press

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, Physik des Erdsystems: Meteorologie -	Pflicht	1 & 2
Ozeanographie - Geophysik	FINCIL	1 & 2
Bachelor, Geowissenschaften	Wahl	3 & 4
Master, Prähistorische- und historische Archäologie	Wahl	-

pherEM Einführung in die Meteorologie

Titel	Modulcode	
Einführung in die Meteorologie	pherEM	
Modulverantwortliche/r		
Dr. Nadine Mengis		
Veranstalter		
GEOMAR Helmholtz-Zentrum für Ozeanforschung		
Fakultät		
Mathematisch-Naturwissenschaftliche Fakultät		
Prüfungsamt		
Prüfungsamt Geographie und Geowissenschaften		

Status (P / WP / W)	P
Leistungspunkte	3
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	in jedem Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	90 Stunden
Präsenzstudium	26 Stunden
Selbststudium	64 Stunden

Lehrsprache	Englisch
Zugangsvoraussetzung laut Prüfungsordnung	keine
Empfohlene Zugangsvoraussetzung*	

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahlpflicht/Wahl	sws
Vorlesung	Einführung N	Meteorologie	Pflicht	2
Weitere Bemerkungen zu der/den			•	
Modulveranstaltung(en)*				
Voraussetzungen für die Z	ulassung			
zu der/den Prüfung(en) (Vo	orleis-			
tungen)*				

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Einführung Meteorologie	Klausur	benotet	Pflicht	100%
Weitere Bemerkungen zu	der/den		•	
Prüfung(en)*				

Kurzzusammenfassung*

Lehrinhalte

Wetter und Klima, Aufbau der Atmosphäre, meteorologische Zustandsgrößen, atmosphärische Statik, Thermodynamik, atmosphärische Strahlung, Wasser in der Atmosphäre, Dynamik, Allgemeine Zirkulation, Regionale Phänomene

Lernziele

Die Studierenden haben das Grundwissen über die Struktur und Dynamik der Atmosphäre erworben. Sie sind in der Lage die wichtigsten physikalischen Mechanismen in der Atmosphäre zu verstehen und diese Kenntnisse in den fachlich vertiefenden Modulen der Meteorologie und Ozeanographie anzuwenden.

Literatur

Die Atmosphäre der Erde, H. Kraus, 3. Aufl., 2004, Springer Heidelberg An Introduction to Dynamic Meteorology, J. Holton, G. Hakim, Academic Press, 2012 Atmospheric Science: An introductory Survey, Wallace & Hobbs, Academic Press, 2nd edition

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie - Ozeanographie - Geophysik	Pflicht	1
Bachelor, 1-Fach, Geowissenschaften	Wahl	
Bachelor, 1-Fach, Geographie	Wahlpflicht	-
Master, 1-Fach, Umweltgeographie und -management	Wahl	

pherIPO Introduction to Physical Oceanography

Module Name	Modul Code	
Introduction to Physical Oceanography	pherIPO	
Module Coordinator	•	
Prof. Dr. Peter Brandt		
Organizer		
GEOMAR Helmholtz Centre for Ocean Research Kiel		
Fakulty		
Faculty of Mathematics and Natural Sciences		
Examination Office		
Examination Office Geosciences		

Status (C / CE / O)	C
ECTS Credits	3
Evaluation	graded
Duration	one Semester
Frequency	every summer semester
Workload per ECTS Credit	30 hours
Total Workload	90 hours
Contact Time	26 hours
Independent Study	64 hours

Teaching Language	Englisch
Entry Requirements as Stated in the Examination Regulations	none
Recommended Requirements*	

Module Course(s)				
Course Type	Course Name		Compulsory/Compulsory elective/Optional	Credit hours
Lecture	Introduction to Oceanography	•	Compulsory	2
Further Information on the Course(s)*				
Prerequisits for Admission to the Examination(s)*				

Examination(s)					
Examination Name	Type of	Evaluation Compulsory/Compulsory		Weighting	
	Examination		elective/Optional	g	
Introduction to Physical	Written	Graded	Compulacry	100%	
Oceanography	Examination	Graded	Compulsory	100%	
Further Information on the Examination(s)*					

Short Summary*

Course Content

Topography of the sea bed, composition and physical properties of sea water and sea ice, sound, heat budget, mean sea salt stratification, characteristic water masses, wind induced ocean currents,

geostrophic currents, thermohaline circulation, regional oceanography, tides, ocean currents

Learning Outcomes

The students have developed a basic knowledge of the the structure and dynamics of the ocean. They are able to understand the most important physical mechanisms in the ocean and to apply this knowledge in the study of subject-specific topics of the continuing modules of meteorology and physical oceanography.

Reading List

Talley, L.D., G.L. Pickard, W.J. Emery, J.H. Swift, 2011: Descriptive Physical Oceanography - An Introduction. Pergamon Press, 6th edition, 555 pp.

Bearman, G. (Ed.), 1989: Waves, tides and shallow-water processes. Pergamon Press, Oxford (Open Univ.), reprinted with corrections 1991,1995, 1997, 187 pp.

Bearman, G. (Ed.), 1989: Ocean circulation. Pergamon Press, Oxford (Open Univ.), reprinted with corrections 1998, 238 pp.

Bearman, G. (Ed.), 1998: The ocean basins: their structure and evolution.

Pergamon Press, Oxford (Open Univ.), 2nd edition, 185 pp.

Tomczak, M. and J.S. Godfrey, 1994: Regional Oceanography: An Introduction. Pergamon Press, 422 pp.

Additional Information*

Application of module

Application	Compulsory / Optional	Semester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie - Ozeanographie - Geophysik	Compulsory	2
Bachelor, 1-Fach, Geowissenschaften	Optional	
Bachelor, 1-Fach, Geographie	Wahlpflicht	-
Master, 1-Fach, Umweltgeographie und -management	Optional	

pherDGL Differentialgleichungen im System Erde

Titel	Modulcode	
Differentialgleichungen im System Erde	pherDGL	
Modulverantwortliche/r		
Dr. Daniel Köhn		
Veranstalter		
Institut für Geowissenschaften		
Fakultät		
Mathematisch-Naturwissenschaftliche Fakultät		
Prüfungsamt		
Prüfungsamt Geographie und Geowissenschaften		

Status(P/WP/W)	P
Leistungspunkte	6
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	alle zwei Semester, im Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	180 Stunden
Präsenzstudium	52 Stunden
Selbststudium	128 Stunden

Lehrsprache	Deutsch	
Zugangsvoraussetzung laut	keine	
Prüfungsordnung		
	Mathematik für die Physik der Erde I + II (math-phys-104e	
Empfohlono Zugangsvoraussotzung*	+ math-phys-204e). Für die Übungen sind grundlegende	
Empfohlene Zugangsvoraussetzung*	Programmierkenntnisse in Python (Numpy, Scipy,	
	Matplotlib) erforderlich.	

Modulveranstaltung(en)						
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahlpflicht/Wahl	sws		
Vorlesung	Differentialgleichungen im System Erde		Pflicht	2		
Übung	Übungen zu Differentialgleichungen im System Erde		Pflicht	2		
Weitere Bemerkungen zu der/den				•		
Modulveranstaltung(en)*						
Voraussetzungen für die Zulassung		Erfolgreiche Bearbeitung von Rechenübungen.				
zu der/den Prüfungen(en)		Enorgicione Dearbeitung	y von Rechembungen.			
(Vorleistungen)*						

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Differentialgleichungen im System Erde	Klausur	Benotet	Pflicht	100%
Weitere Bemerkungen z	u der/den			•
Prüfung(en)*				

Kurzzusammenfassung*

Einführung in analytische, symbolische und numerische Lösungsverfahren von Differentialgleichungen zur physikalischen Beschreibung des Systems Erde.

Lehrinhalte

Differentialgleichungen sind der Schlüssel sowohl zur physikalischen Beschreibung der komplexen Wechselwirkung von Atmosphäre und Ozeanen, als auch der Geodynamik und Ausbreitung von seismischen Wellen in der festen Erde. Neben analytischen und symbolischen Lösungen von Differentialgleichungen für einfache Problemstellungen, spielen dabei insbesondere numerische Lösungsverfahren eine bedeutende Rolle.

In dieser Vorlesung sollen diese Lösungsverfahren ausgehend von einfachen gewöhnlichen Differentialgleichungen erarbeitet und auf komplexere partielle Differentialgleichungen, wie die Poisson Gleichung, Wärmeleitungsgleichung, akustische Wellengleichung, Euler Gleichung, Navier-Stokes Gleichung, Flachwasser Gleichung sowie spezielle nichtlinare Differentialgleichungen, wie der Korteweg-DeVries Gleichung, erweitert werden. Neben den rein mathematischen Aspekten der Differentialgleichungen steht dabei vor allem die physikalische Anwendung im System Erde im Vordergrund.

Die theoretischen Grundlagen werden in den Übungen durch Programmieraufgaben und Modellierungsbeispiele vertieft.

Lernziele

Die Studierenden haben umfassende Kenntnisse über Differentialgleichungen zur Beschreibung der Physik des Erdsystems erhalten. In den Übungen haben sie die Sachkompetenz zur Lösung von Differentialgleichungen mit analytischen, symbolischen und numerischen Ansätzen, sowie deren Visualisierung erworben.

Literatur

Vorlesungsskript

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Pflicht	2
Ozeanographie - Geophysik	FIIIGH	5

Doing Science

pherWiss Grundlagen des Wissenschaftlichen Arbeitens

Titel	Modulcode
Grundlagen des Wissenschaftliches Arbe	itens pherWiss
Modulverantwortliche/r	f
Dr. Wolfgang Szwillus	
Veranstalter	
Institut für Geowissenschaften	
Fakultät	
Mathematisch-Naturwissenschaftliche Fal	kultät
Prüfungsamt	
Prüfungsamt Geographie und Geowissen	schaften
Status (P / WP / W)	P
Leistungspunkte	4
Bewertung (benotet/unbenotet)	unbenotet
Dauer	zwei Semester
Angebotshäufigkeit	alle zwei Semester, im Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	120 Stunden
Präsenzstudium	52 Stunden
Selbststudium	68 Stunden
Lehrsprache	Deutsch
Zugangsvoraussetzung laut	
Prüfungsordnung	keine
Empfohlene Zugangsvoraussetzung*	keine
Modulveranstaltung(en)	
	Delicht/Mohlmelicht/Mohl CIMC

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahlpflicht/Wahl	sws
Praktische Übung	Grundlagen Arbeitens	des wissenschaftlichen	Pflicht	2
Praktische Übung	Angewandtes Programmieren		Pflicht	2
Weitere Bemerkungen zu	der/den			•
Modulveranstaltung(en)*				
Voraussetzungen für die Z	Zulassung			
zu der/den Prüfung(en) (Vorleis-				
tungen)*				

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Grundlagen des Wiss. Arbeiten	Testate	Unbenotet	Pflicht	100%
Weitere Bemerkungen Prüfung(en)*	zu der/den	·		

Kurzzusammenfassung*	

Im Praxismodul "Wissenschaftliches Arbeiten" sollen die Studierenden die Grundlagen des wiss. Arbeitens hinsichtlich der digitalen Analyse erlernen. Im Vordergrund stehen Kompetenzen in der digitalen Verarbeitung und Analyse von Daten. So werden Grundlagen in der Programmierung erarbeitet, die später auf mehrere höhere Programmiersprachen angewendet werden können. Studenten werden vertraut gemacht mit den grundlegenden Funktionen zum Rechnen mit diskreten digitalen Daten. Aber auch Fehlerrechnung wird hier eingeführt. Ein weiterer Bestandteil sind Grundlagen zur Struktur von Berichten und Übungen zum Erstellen von Berichten sowie zur korrekten Zitation.

Lehrinhalte

Grundlagen der Fehlerrechnung

Grundlagen der Programmierung

Struktur von wissenschaftlichen Berichten und Vorträgen, korrekte Zitation

Formate von digitalen Daten

Grundlagen in der Darstellung von Daten

Lernziele

Die Studenten haben praktische Kenntnisse in der Fehlerrechnung erlernt. D.h. sie sind in der Lage Messfehler richtig zu bestimmen und in Unsicherheitsangaben von Ergebnissen darzustellen. Die Studenten haben ein grundlegendes Verständnis in der Benutzung des Computers als Werkzeug für die Wissenschaft erworben. Sie besitzen Kenntnisse in der Verwendung der Hardware- und Software-Ressourcen an der Uni und bei sich zuhause. Die Studenten haben erste grundlegende Kompetenzen in der digitalen Datenverarbeitung mit wissenschaftlicher Software. Sie kennen Wege, wie Daten richtig eingelesen werden, wie man mit Daten einfache Rechnungen am Computer durchführt und wie man Daten sowie Ergebnisse darstellt. Die Studenten kennen die Grundlagen zur Erstellung wissenschaftlicher Berichte. Das betrifft den generellen Aufbau von Berichten, die wissenschaftliche Schreibweise, gute grafische Darstellungen und die richtige Referenzierung.

Literatur

Berendsen, A student's guide to data and error analysis, Cambridge Univ. Press, 2011 Web-Tutorials für python und octave (zu benennen)

MATLAB Documentation: http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml
Trauth, M.H., 2007: MATLAB recipes for Earth Sciences. Springer

Weitere Angaben*

Voraussetzung für Teilnahme an pherData "Zeitreihen- und Raumdatenanalyse"

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems:	Pflicht	1 &
Meteorologie - Ozeanographie - Geophysik	FIIIGH	2

pherData Zeitreihen- und Raumdatenanalyse

Titel		Modulcode
Zeitreihen- und Raumdatenanalyse		pherData
Modulverantwortliche/r		
Prof. Dr. Morelia Urlaub		
Veranstalter		
Institut für Geowissenschaften		
Fakultät		
Mathematisch-Naturwissenschaftliche Fak	ultät	
Prüfungsamt		
Prüfungsamt Geographie und Geowissens	chaften	
Ot-1 (D /14/D /14/)	lo.	
Status (P / WP / W)	P	
Leistungspunkte	4	
Bewertung (benotet/unbenotet)	unbenotet	
Dauer	ein Semester	
Angebotshäufigkeit	alle zwei Semester, im Wir	ntersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden	
Arbeitsaufwand insgesamt	120 Stunden	
Präsenzstudium	52 Stunden	
Selbststudium	68 Stunden	

Lehrsprache	Deutsch
Zugangsvoraussetzung laut Prüfungsordnung	pherWiss
Empfohlene Zugangsvoraussetzung*	keine

Modulveranstaltung(en)						
Lehrveranstaltungsform	Lehrveranstaltungstitel		el Pflicht/Wahlpflicht/Wahl		SWS	
Praktische Übung	Digitale Zeitr	eihen und	Pflicht	Dflight	4	
Fraktische Obung	Raumdatenanalyse		FIIICIII	FIICH	4	
Weitere Bemerkungen zu der/den						
Modulveranstaltung(en)*						
Voraussetzungen für die Zulassung						
zu der/den Prüfung(en) (Vorleis-						
tungen)*						

Prüfung(en)					
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht	
Zeitreihen- und	Testate	Unbenotet	Pflicht	100%	
Raumdatenanalyse	restate	Officerotet			
Weitere Bemerkunger	n zu der/den	•	•		
Prüfung(en)*					

Kurzzusammenfassung*	

Im Praxismodul "Wissenschaftliches Arbeiten" sollen die Studierenden die Grundlagen des wiss. Arbeitens hinsichtlich der digitalen Analyse erlernen. Im Vordergrund stehen Kompetenzen in der digitalen Verarbeitung und Analyse von Daten. So werden Programmierfähigkeiten in häufig verwendeten höheren Programmiersprachen erarbeitet. In praktischen Übungen wird weiterhin einführend die Analyse von digitalen Daten gelernt und geübt, so zum Beispiel statistische Verfahren, Zeitreihenanalysen und Raumdatenverarbeitung. Die Studenten erwerben hier grundlegende Kenntnisse zum Analysieren aber auch Visualisieren von Zeitreihen und Raumdaten.

Lehrinhalte

Grundlagen Programmierung mit matlab und python

Formate von digitalen Daten

Koordinatensysteme

Spektren

Vektor- und Rasterdaten

Darstellung von Daten

Lernziele

Die Studenten haben ihre Kompetenzen in der wissenschaftlichen Programmierung und in häufig auftretenden geowissenschaftlichen Analysen mit digitalen Daten weiterentwickelt. Sie besitzen Sachkompetenzen in der Analyse von Zeitreihendaten (Seismogramme und andere Messreihen) und räumlichen Daten (meteorologische Karten, Schwerefelddaten und ähnliches) und haben die Kenntnisse in der Visualisierung von Daten und Ergebnissen ausgebaut. Sie haben wichtige grundlegende Fähigkeiten zur eigenständigen Verarbeitung von digitalen Daten erworben. Die Studenten sind in der Lage ihre Kenntnisse auf andere Datenverarbeitungsaufgaben und Analysen in anderen Modulen zu übertragen, z. B. Blockpraktikum, Semesterprojekt und Bachelorarbeit.

Literatur

Berendsen, A student's guide to data and error analysis, Cambridge Univ. Press, 2011

Web-Tutorials für python und octave (zu benennen)

Numerical recipies: the art of scientific computing

MATLAB Documentation: http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml

Trauth, M.H., 2007: MATLAB recipes for Earth Sciences. Springer

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Pflicht	3
Ozeanographie - Geophysik	Fillorit	5

pherPraG Messmethoden und Feldpraktikum Geophysik

Titel	Modulcode
Messmethoden und Feldpraktikum Geophysik	pherPraG
Modulverantwortliche/r	
Dr. Dennis Wilken	
Veranstalter	
Institut für Geowissenschaften	
Fakultät	
Mathematisch-Naturwissenschaftliche Fakultät	
Prüfungsamt	
Prüfungsamt Geographie und Geowissenschaften	

Status (P / WP / W)	WP
Leistungspunkte	8
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	alle zwei Semester, im Sommersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	240 Stunden
Präsenzstudium	65 Stunden
Selbststudium	175 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut	keine
Prüfungsordnung	Refile
Empfohlene Zugangsvoraussetzung*	geopEGPH, pherWiss, pherData

Modulveranstaltung(en)						
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahlpflicht/Wahl	sws		
Vorlesung	Messgeräte	der Geophysik	Pflicht	2		
Praktikum	Feldpraktiku	ım Geophysik	Pflicht	3		
Weitere Bemerkungen zu der/den		Auswahl aus einem Modul aus pherPraO, pherPraG und				
Modulveranstaltung(en)*		pherPraM				
Voraussetzungen für die Zulassung						
zu der/den Prüfung(en) (Vorleis-						
tungen)*						

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Feldpraktikum	Bericht	Benotet	Pflicht	100%
Geophysik	Denchi	benotet	Pilicht	100%
Weitere Bemerkun	igen zu der/den			
Prüfung(en)*				

Kurzzusammenfassung*

Einführung in die Funktionsweise und Nutzung geophysikalischer Messgeräte, praktische Durchführung von Versuchen im Feld sowie deren Auswertung und Interpretation.

Lehrinhalte

Theoretische und praktische Einführung in die Funktionsweise und Nutzung geophysikalischer

Messgeräte; Im Anschluss an die Vorlesung über geophysikalische Messgeräte werden Feldpraktika in folgenden Bereichen angeboten, welche die praktische Durchführung von Versuchen im Feld sowie deren Auswertung, Interpretation, und Dokumentation zum Thema haben:

- Marine Geophysik
- Archäologische Prospektion
- Gravimetrie und Magnetik
- Ingenieurgeophysik und Gebäudestrukturanalyse

Lernziele

Die Studierenden haben ein Verständnis der Funktionsweise von geophysikalischen Messgeräten erworben. Die Studierenden haben die Nutzung und Basisschritte der Datenanalyse und Messkampagnendurchführung in der Geophysik erlernt.

Literatur

Kearey, P., M. Brooks und I. Hill (2002): An introduction to geophysical exploration (3nd edition). Blackwell Sc. Publ., Oxford

Martin Beblo (Hrsg.) (1997): Umweltgeophysik. Ernst & Sohn

Knödel, K., H. Krummel und G. Lange (eds.)(1997): Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten Band 3: Geophysik. Springer Verlag, Berlin.

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Wahlpflicht	4
Ozeanographie - Geophysik	vanipilion	

pherPraO Messmethoden und Feldpraktikum Ozeanographie

Titel	Modulcode				
Messmethoden und Feldpraktikum Ozeanographie	pherPraO				
Modulverantwortliche/r	-				
Prof. Dr. Peter Brandt					
Veranstalter					
GEOMAR Helmholtz-Zentrum für Ozeanforschung					
Fakultät					
Mathematisch-Naturwissenschaftliche Fakultät					
Prüfungsamt					
Prüfungsamt Geographie und Geowissenschaften					

Status (P / WP / W)	WP
Leistungspunkte	8
Bewertung (benotet/unbenotet)	Benotet
Dauer	ein Semester
Angebotshäufigkeit	alle zwei Semester, im Sommersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	240 Stunden
Präsenzstudium	65 Stunden
Selbststudium	175 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut	Keine
Prüfungsordnung	Reme
Empfohlene Zugangsvoraussetzung*	pherIPO, pherWiss und pherData

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrveranstaltungstitel		Pflicht/Wahlpflicht/Wahl	sws
Vorlesung	Messmetho	den der Ozeanographie	Pflicht	2
Praktikum	Feldpraktiku	ım Ozeanographie	Pflicht	3
Weitere Bemerkungen zu der/den Modulveranstaltung(en)*		pherPraM.	aus pherPraO, pherPraG u enfachstudenten sind stark li kten Mitfahrerzahl auf dem	
Voraussetzungen für die Zulassung zu der/den Prüfung(en) (Vorleis- tungen)*				

Prüfung(en)						
Prüfungstitel	Prüfungsform	1	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht	
Messmethoden und						
Feldpraktikum	Mündlich		Benotet	Pflicht	100%	
Ozeanographie						
Weitere Bemerkungen zu der/den Anfertigen eines Berichtes zur Stationsarbeit während des					nd des	
Prüfung(en)*		Prakti	kums.			

Kurzzusammenfassung*

Lehrinhalte

Einführung in Verfahren zur Erfassung von Vorgängen im Erdsystem; Praktische Durchführung von Versuchen im Feld sowie deren Auswertung und Interpretation; Dokumentation der Feldversuche (Aufbau, Durchführung, Ergebnisse).

Lernziele

Die Studierenden besitzen eine umfassende Sachkompetenz in der Durchführung von ozeanographischen Messverfahren, der Funktionsweise und Benutzung der Messgeräte, in der Planung und Aufnahme von Messdaten und in der Auswertung und Bewertung der gewonnenen Daten. Die Studierenden haben Grundkenntnisse von seegehenden Arbeitsabläufen erworben.

Literatur

Emery, W.J. and R.E. Thomson, 1998: data and their analysis methods in physical oceanography. 1st and 2nd eds., Pergamon Press, Amsterdam, 634 pp.

Stewart, R.H., (online publication), Introduction to Physical Oceanography,

http://oceanworld.tamu.edu/resources/ocng_textbook/contents.html

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie - Ozeanographie - Geophysik	Wahlpflicht	4
Bachelor, 1-Fach, Geographie	Wahlpflicht	-

pherPraM Messmethoden und Feldpraktikum Meteorologie

Titel			Modulcode		
Messmethoden und Feldpra	essmethoden und Feldpraktikum Meteorologie		pherPraM		
Modulverantwortliche/r					
Dr. Nadine Mengis					
Veranstalter					
GEOMAR Helmholtz-Zentru	m für Ozeanf	orschung			
Fakultät					
Mathematisch-Naturwissens	chaftliche Fa	kultät			
Prüfungsamt					
Prüfungsamt Geographie un	d Geowissen	schaften			
Status (P / WP / W)		WP			
Leistungspunkte		8	erData		
Bewertung (benotet/unbend	otet)	benotet			
Dauer		ein Semester	mmersemester erData erData flicht/Wahlpflicht/Wahl SWS flicht 2 flicht 3		
Angebotshäufigkeit		alle zwei Semester, im S	ommersemester		
Arbeitsaufwand pro Leistungspunkt		30 Stunden			
Arbeitsaufwand insgesamt		240 Stunden			
Präsenzstudium		65 Stunden			
Selbststudium		175 Stunden			
Lehrsprache		Englisch			
Zugangsvoraussetzung la Prüfungsordnung	ut	keine			
Empfohlene Zugangsvora	ussetzung*	pherEM, pherWiss und p	herData		
Modulveranstaltung(en)					
Lehrveranstaltungsform	Lehrveranst	altungstitel	Pflicht/Wahlpflicht/Wahl	sws	
Vorlesung	Messmethod	len Meteorologie	Pflicht	2	
Praktikum	Feldpraktikuı	m Meteorologie	Pflicht	3	
		Praktikumsplätze sind limit			
_			aus pherPraO, pherPraG u	nd	
Modulveranstaltung(en)*		pherPraM			
Voraussetzungen für die Z zu der/den Prüfung(en) (Vo tungen)*	_				

Prüfung(en)					
Prüfungstitel	Prüfungsform		Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Messmethoden und					
Feldpraktikum	Mündlich		Benotet	Pflicht	100%
Meteorologie					
Weitere Bemerkungen zu der/den Prüfung(en)* Anfertigung eines Praktikumsprotokolls.					

Kurzzusammenfassung*

Lehrinhalte

Einführung in Verfahren zur Erfassung von Vorgängen im Erdsystem;

Praktische Durchführung von Versuchen im Feld sowie deren Auswertung und Interpretation;

Protokollierung der Feldversuche (Aufbau, Durchführung, Ergebnisse).

Lernziele

Die Studierenden kennen die Grundlagen der meteorologischen Messverfahren und ihrer Anwendung. Die Studierenden haben erlernt Messungen im Feld durchzuführen. Die Studierenden haben umfangreiche Kenntnisse in der Auswertung solcher Messungen erworben.

Sie sind in der Lage ein Messsystem aufzubauen und zu betreiben.

Sie besitzen eine umfassende Kenntnis der möglichen Fehlerquellen der unterschiedlichsten Messgeräte und ihrer Vermeidung.

Im Rahmen des praktischen Teils haben sie Sachkompetenzen in bezug auf die Abläufe solcher Messungen im Feld gewonnen, von der Planung über den Aufbau bis hin zur Fehleranalyse und Anfertigung der Messprotokolle.

Literatur

Atmospheric Science: An introductory survey. Wallace & Hobbs. Academic Press. 2nd edition.

An introduction to error analysis. J. Taylor

Guide to Meteorological Instrumentation and Methods of Observations. WMO.

Meteorological Measurements and Instrumentation. Harrison. (2014)

Weitere Angaben

Anmeldeliste wird zu Beginn des Sommersemesters in der Vorlesung ausgegeben

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Wahlpflicht	4
Ozeanographie - Geophysik	vvariipiliciti	4
Bachelor, 1-Fach, Geographie	Wahlpflicht	-

pherProj Semesterprojekt

Titel	Modulcode		
Semesterprojekt	pherProj		
Modulverantwortliche/r			
Prof. Dr. Peter Brandt			
Veranstalter			
GEOMAR Helmholtz-Zentrum für Ozeanforschung			
Fakultät			
Mathematisch-Naturwissenschaftliche Fakultät			
Prüfungsamt			
Prüfungsamt Geographie und Geowissenschaften			

Status (P / WP / W)	P
Leistungspunkte	5
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	alle zwei Semester, im Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	150 Stunden
Präsenzstudium	26 Stunden
Selbststudium	124 Stunden

Lehrsprache	Deutsch/Englisch
Zugangsvoraussetzung laut Prüfungsordnung	keine
Empfohlene Zugangsvoraussetzung*	

Modulveranstaltung(en)						
Lehrveranstaltungsform	Lehrveranst	altungstitel	Pflicht/Wahlpflicht/Wahl	SWS		
Seminar	Semesterpro	jekt	Pflicht	2		
Weitere Bemerkungen zu o	der/den					
Modulveranstaltung(en)*						
Voraussetzungen für die Z	ulassung					
zu der/den Prüfung(en) (Vo	orleis-					
tungen)*						

Prüfung(en)					
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht	
Semesterprojekt	Referat und	Benotet	Pflicht	100%	
	Hausarbeit	benotet	Pilicit	10076	
Weitere Bemerkunge	n zu der/den				
Prüfung(en)*					

Kurzzusammenfassung*

Das Semesterprojekt soll die Studierenden an das wissenschaftliche Arbeiten in individueller Projektform und mit einem klar umgrenzten Thema heranführen und ist eine Vorbereitung auf die Bachelorarbeit.

Lehrinhalte

Im Semesterprojekt sollen Themen aus den verschiedenen Forschungsbereichen der beteiligten

Institute eigenständig und unter Anleitung bearbeitet werden. Das schließt, die Literaturrecherche, die Bearbeitung von Datensätzen oder Durchführung von Experimenten, die Zusammenfassung der Ergebnisse und die Einordnung in das wissenschaftliche Umfeld mit ein. Die Ergebnisse werden schriftlich in Form einer Hausarbeit und mündlich in Form eines Seminarvortrags vorgestellt.

Lernziele

Die Studenten haben grundlegende Kenntnisse und erste Fähigkeiten zum wissenschaftlichen Arbeiten erworben. Sie sind in der Lage wissenschaftliche Ausarbeitungen zu erstellen und wissenschaftliche Vorträge zu halten.

Literatur

k.A.

Weitere Angaben*

Vorbesprechung mit Themenvergabe findet am Ende des 4. Semesters statt

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Pflicht	5
Ozeanographie - Geophysik	i iliciti	

pherBPra Berufspraktikum

Titel				Modulcode	
Berufspraktikum			Ī	oherBPra	
Modulverantwortliche/r					
Prof. Dr. Peter Brandt					
Veranstalter					
GEOMAR Helmholtz-Zer	ntrum für Ozeanfo	orschung			
Fakultät					
Mathematisch-Naturwiss	enschaftliche Fal	kultät			
Prüfungsamt					
Prüfungsamt Geographie	und Geowissens	schaften			
Status (P / WP / W)		P			
Leistungspunkte		4			
Bewertung (benotet/unb	enotet)	unbenotet			
Dauer		mindestens drei Wochen ganztags - 30 Stunden			
Angebotshäufigkeit		-			
Arbeitsaufwand pro Lei					
Arbeitsaufwand insges	amt	120 Stunden			
Präsenzstudium		0 Stunden			
Selbststudium		120 Stunden			
Lehrsprache		k.A.			
Zugangsvoraussetzung	keine				
Prüfungsordnung	Konio				
Empfohlene Zugangsvo	oraussetzung*				
Modulveranstaltung(en					
Lehrveranstaltungsforn				licht/Wahlpflicht/V	Vahl SWS
Blockpraktikum	Berufspraktik	um	Pf	licht	-
Weitere Bemerkungen z					
Modulveranstaltung(en	•				
Voraussetzungen für di	•				
zu der/den Prüfung(en)	(Vorleis-				
tungen)*					
Prüfung(en)					
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/V	Vahlpflicht/Wahl	Gewicht
Berufspraktikum	Bericht	Unbenotet	Pflicht		100%
Deruispraktikum		•			•
'	zu der/den				
Weitere Bemerkungen z	zu der/den				
Weitere Bemerkungen z Prüfung(en)* Kurzzusammenfassung					
Weitere Bemerkungen z Prüfung(en)* Kurzzusammenfassung					
Weitere Bemerkungen z Prüfung(en)* Kurzzusammenfassung Lehrinhalte	j*	on odor outlorus	iversitären l	- inrightung	
Weitere Bemerkungen z Prüfung(en)* Kurzzusammenfassung Lehrinhalte Berufspraktikum an einer	j*	en oder außeruni	iversitären I	Einrichtung	
Weitere Bemerkungen z Prüfung(en)* Kurzzusammenfassung Lehrinhalte	j* wissenschaftlich			-	

Kenntnisse in der Praxis einzusetzen.

Die Studierenden haben so einen Einblick in mögliche berufliche Tätigkeitsfelder gewonnen. Sie sind in der Lage, sich in ein Thema einzuarbeiten und dieses in einem kurzen Zeitraum zu bearbeiten.

Literatur

k.A.

Weitere Angaben*

Informationen bei den jeweiligen Praktikumsbeauftragten für Meteorologie, Physikalische Ozeanographie, Geophysik und unter:

www.geomar.de/studieren/bsc-physik-des-erdsystems/berufspraktikum/

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Pflicht	G
Ozeanographie - Geophysik	FIIICH	O

pherThes Bachelor Thesis

Titel				Modulcode		
Bachelorarbeit				pherThes		
Modulverantwortliche/r						
Prof. Dr. Peter Brandt						
Veranstalter						
GEOMAR Helmholtz-Zentrum für Ozeanf	forse	chung				
Fakultät						
Mathematisch-Naturwissenschaftliche Fa	akult	ät				
Prüfungsamt						
Prüfungsamt Geographie und Geowisser	nsch	naften				
Status (P / WP / W)	Р					
Leistungspunkte	1.	2				
Bewertung (benotet/unbenotet)	b	enotet				
Dauer	9	Wochen				
Angebotshäufigkeit						
Arbeitsaufwand pro Leistungspunkt	3	0 Stunden				
Arbeitsaufwand insgesamt	3	60 Stunden				
Präsenzstudium	0	Stunden				
Selbststudium	3	60 Stunden				
Lehrsprache	D	eutsch/Englisc	h			
Zugangsvoraussetzung laut	1	20 Leistungspu	ınkto			
Prüfungsordnung		zo Leistungspt	IIIKIE			
		Die Module im Bereich Mathematisch-physikalische				
		Grundlagen, Fachliche Grundlagen und Doing Science				
Empfohlene Zugangsvoraussetzung*		sollten abgeschlossen sein; eine Vertiefung sollte durch				
		Wahlpflichtmodule in der Fachdisziplin der Bachelorarbeit				
	е	rfolgt sein.				
Modulveranstaltung(en)						
Lehrveranstaltungsform Lehrverans	taltı	ungstitel		Pflicht/Wahlpflicht/	Wahl	SWS
				-		-
Weitere Bemerkungen zu der/den	Die	Bachelorarbei	t soll in	einem Arbeitsgruppen	semin	ar als
5 ()	Vor	trag präsentier	t werde	en.		
Voraussetzungen für die Zulassung						
zu der/den Prüfung(en) (Vorleis-						
tungen)*						
Prüfung(en)						
Prüfungstitel Prüfungsform		Bewertung	Pflic	cht/Wahlpflicht/Wahl	Gew	icht
Bachelorarbeit Schriftlich		Benotet	Pflic	•	100%	
Weitere Bemerkungen zu der/den		1	ı			
Prüfung(en)*						
Kurzzusammenfassung*						

Lehrinhalte

Anfertigen einer selbständigen wissenschaftlichen Arbeit eines vorgegebenen Themas unter Anleitung.

Lernziele

Die Studierenden sind befähigt, mittels der im Bachelor-Studium erlernten Kenntnisse und Methoden ein wissenschaftliches Thema aus der Geophysik, Meteorologie oder Ozeanographie zu bearbeiten und die Ergebnisse entsprechend der Regeln des wissenschaftlichen Publizierens schriftlich zu präsentieren.

Literatur

k.A.

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Pflicht	6
Ozeanographie - Geophysik	riiciit	O

Fachliche Vertiefung

Geophysik

geopEGPH03 Geophysik des Systems Erde

Titel	Modulcode	
Geophysik des Systems Erde	geopEGPH03	
Modulverantwortliche/r		
Thomas Meier		
Veranstalter		
Institut für Geowissenschaften		
Fakultät		
Mathematisch-Naturwissenschaftliche Fakultät		
Prüfungsamt		
Prüfungsamt Geographie und Geowissenschaften		

Status (P / WP / W)	WP
Leistungspunkte	6
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	alle zwei Semester, im Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	180 Stunden
Präsenzstudium	52 Stunden
Selbststudium	128 Stunden

Lehrsprache	Deutsch	
Zugangsvoraussetzung laut Prüfungsordnung	keine	
Empfohlene Zugangsvoraussetzung*	geopEGPH Einführung in die Geophysik Teil 1 und 2	

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrveransta	ltungstitel	Pflicht/Wahlpflicht/Wahl	sws
Vorlesung	Geophysik de	s Systems Erde	Pflicht	2
Praktische Übung	Gesteinskurs		Pflicht	2
Weitere Bemerkungen zu	der/den			
Modulveranstaltung(en)*				
Voraussetzungen für die 2	Zulassung			
zu der/den Prüfung(en) (V	orleis-			
tungen)*				

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Geophysik des	Klausur oder	Donatat	Pflicht	70%
Systems Erde	mündliche Prüfung	Benotet	PIIICIL	
Gesteinskurs	mündlich	Benotet	Pflicht	30%
Weitere Bemerkun	gen zu der/den	1		- U.
Prüfung(en)*				

Kurzzusammenfassung*	
In der Vorlesung wird eine Einführung in die Geodynamik der festen Erde und in die	treibenden Kräfte

der Plattentektonik gegeben. Die Übung gibt Gelegenheit, sich in der geologischen Sammlung mit den Eigenschaften von Gesteinen anhand von Gesteinsproben einführend vertraut zu machen.

Lehrinhalte

Folgende Themen werden in der Vorlesung einführend behandelt:

Mittlere Eigenschaften der Erde als Funktion der Tiefe: die wesentlichen Schalen und Diskontinuitäten

Temperaturen in der Erde

Wärmetransport in der Erde

Die Entwicklung ozeanischer Lithosphäre

Strukturen und Prozesse im Erdkern

Der Energiehaushalt der Erde

Geophysikalische Beobachtungen der Mantelkonvektion

Spannung und Deformation in der Erde

Praktische Übung: Gesteinskurs zur Bestimmung von Gesteinen anhand von Handstücken. Falls der Gesteinskurs bereits absolviert wurde, wird alternativ ein Laborpraktikum gewählt, in dem physikalische Eigenschaften von Gesteinen an Gesteinsproben bestimmt werden. Die Übung enthält eine Exkursion zur Steilküste Stohl.

Lernziele

Die Studierenden kennen den Schalenaufbau der Erde und wesentliche geodynamische Prozesse, z.B. verschiedene Formen des Wärmetransports wie Wärmeleitung und Konvektion. Sie kennen eindimensionale Modelle der Temperatur, der Dichte, der seismischen Geschwindigkeiten und des Drucks und können sie interpretieren. Weiterhin entwickeln die Studierenden ein Grundverständnis über die gegenwärtigen Kenntnisse der dreidimensionalen Eigenschaften der Erde und die treibenden Kräfte endogener Prozesse.

Die Studierenden erwerben Kenntnisse über Möglichkeiten und Grenzen geophysikalischer Untersuchungen des Erdinneren und der treibenden Kräfte der Plattentektonik. Sie können tomographische Modelle des Erdmantels interpretieren und haben Kenntnisse über Modelle der Konvektion im äußeren Kern und im Erdmantel erworben.

Die Studierenden erwerben Grundkenntnisse zum Energiehaushalt der Erde und zu der Bedeutung anthropogener Energiefreisetzung.

In der Übung haben die Studierenden Grundkenntnisse über Eigenschaften von Gesteinen und deren Entstehung erworben. Sie können wesentliche Gesteinsarten selbständig erkennen, unterscheiden und beschreiben. Auf der Exkursion wenden sie diese Kenntnisse an und sind in der Lage, vorgefundene Gesteine zu beschreiben und einzuordnen.

Literatur

Davies, G.F., 1999. Dynamic Earth – Plates, Plumes and Mantle Convection, Cambridge University Press.

Fowler, C.M.R., 2005. The solid Earth: An introduction to global geophysics, Cambridge University Press

Turcotte, D. L., Schubert, G., 2002. Geodynamics, Cambridge

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie - Ozeanographie - Geophysik	Wahlpflicht	3

geopAGP01 Gravimetrie und Magnetik

Titel	Modulcode	
Gravimetrie und Magnetik	geopAGP01	
Modulverantwortliche/r	•	
Prof. Dr. Jörg Ebbing		
Veranstalter		
Institut für Geowissenschaften		
Fakultät		
Mathematisch-Naturwissenschaftliche Fakultät		
Prüfungsamt		
Prüfungsamt Geographie und Geowissenschaften		

Status (P / WP / W)	WP	
Leistungspunkte	6	
Bewertung (benotet/unbenotet)	benotet	
Dauer	ein Semester	
Angebotshäufigkeit	alle zwei Semester, im Sommersemester	
Arbeitsaufwand pro Leistungspunkt	30 Stunden	
Arbeitsaufwand insgesamt	180 Stunden	
Präsenzstudium	52 Stunden	
Selbststudium	128 Stunden	

Lehrsprache	Deutsch
Zugangsvoraussetzung laut	keine
Prüfungsordnung	Refile
Empfohlene Zugangsvoraussetzung*	geopEGPH Einführung in die Geophysik Teil 1 und 2

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahlpflicht/Wahl	sws
Vorlesung	Gravimetrie	und Magnetik	Pflicht	2
Übung	Übung zu G	ravimetrie und Magnetik	Pflicht	2
Weitere Bemerkungen zu der/den				
Modulveranstaltung(en)*				
Voraussetzungen für die Z	Zulassung			
zu der/den Prüfung(en) (Vorleis-		Erfolgreiche Lösung der Ü	Jbungsaufgaben.	
tungen)*				

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Gravimetrie und	Mündlich	Benotet	Pflicht	100%
Magnetik	Mundich	Denotet	Pilicit	100%
Weitere Bemerkung	jen zu der/den		•	•
Prüfung(en)*				

Kurzzusammenfassung*

Der Kurs erklärt die Anwendung von Gravimetrie und Magnetik in Theorie und Praxis. Im Vordergrund steht die Erklärung der einzelnen Feldelemente des Schwere- und Magnetfeldes der Erde, sowie die Definition von Anomalien, welche in der angewandten Geophysik verwendet werden. Hierzu werden die

relevanten Erdparameter eingeführt und die Datenanalyse zur deren Interpretation und Modellierung. Die in der Vorlesung dargestellte Theorie wird ergänzt durch praktische Anwendungen in der Übung, in der die wichtigsten Schritte der Datenbearbeitung, Interpretation und Modellierung an exemplarischen Testdatensätzen demonstriert wird.

Lehrinhalte

Das Modul deckt die bandbreit der gravimetrischen und magnetischen Methode in der Angewandten Geophysik ab. Dies beinhaltet die Datengewinnung, -bearbeitung und Interpretation gravimetrischer und magnetischer Felder, den Unterschied zwischen Satelliten-, aero- und terrestrischen Messverfahren, die Rolle des Normalschwerfeld der Erde und ihrer Anomalien, den Zusammenhang zwischen der Dichteverteilung der Erde und Isostasie, das Erdmagnetfeld und seine externen Variationen, die Rolle der Magnetisierung in der Erde, sowie Feldtransformationen, Vertikal- und Horizontalgradienten, direkte und indirekte Interpretationsmethoden in 2D und 3D.

Lernziele

Die Studierenden haben die Fähigkeit zur eigenständigen Messung und Bearbeitung von gravimetrischen und magnetischen Daten in der Angewandten Geophysik erworben. Sie sind in der Lage, die Theoretischen Grundlagen in Standardanalysen anzuwenden. In der Übung haben sie sich die Sachkompetenz zur Datenbearbeitung und -aufbereitung und Interpretation von Schwere- und Magnetfeldern angeeignet.

Literatur

Blakely, R.J., 1996. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press (als EBook im CAU Campus verfügbar).

Clauser, 2018 – Grundlagen der Angewandten Geophysik – Seismik, Gravimetrie, Springer (als EBook im CAU Campus verfügbar).

Weitere Angaben*

Verwendbarkeit des Moduls		
Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie - Ozeanographie - Geophysik	Wahlpflicht	4

geopAGP07 Marine Geophysik

Titel	Modulcode	
Marine Geophysik	geopAGP07	
Modulverantwortliche/r		
Prof. Dr. Christian Berndt		
Veranstalter		
GEOMAR Helmholtz-Zentrum für Ozeanforschung		
Fakultät		
Mathematisch-Naturwissenschaftliche Fakultät		
Prüfungsamt		
Prüfungsamt Geographie und Geowissenschaften		

Status (P / WP / W)	WP
Leistungspunkte	6
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	alle zwei Semester, im Sommersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	180 Stunden
Präsenzstudium	180 Stunden
Selbststudium	0 Stunden

Lehrsprache	Deutsch* (*Englisch falls von den Studierenden	
Lenispiache	gewünscht)	
Zugangsvoraussetzung laut	keine	
Prüfungsordnung	keirie	
Empfohlene Zugangsvoraussetzung*	geopEGPH Einführung in die Geophysik Teil 1 und 2	

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrveranstaltungstitel		Pflicht/Wahlpflicht/Wahl	sws
Vorlesung	Marine Geophysik		Pflicht	2
Praktische Übung	Marine Geop	hysik	Pflicht	2
Weitere Bemerkungen zu der/den		Vorlesung im ersten,	, praktische Übung im zweite	n Teil des
Modulveranstaltung(en)*		Semesters.		
Voraussetzungen für die Zulassung				
zu der/den Prüfung(en) (Vorleis-				
tungen)*				

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Marine Geophysik	Bericht	Benotet	Pflicht	100%
Weitere Bemerkunge	en zu der/den			
Prüfung(en)*				

Kurzzusammenfassung*

Die Studierenden bekommen einen breiten Überblick über die Methoden der Marinen Geophysik. Die Vorlesung soll die Grundlagen für eine Schlüsselfertigkeit für Geophysiker (die Auswertung von 3D seismischen Daten) vermitteln.

Lehrinhalte

In der Vorlesung wird den Studierenden ein Überblick über die Anwendungsgebiete der marinen Geophysik vermittelt. Die Vorlesung beginnt mit einer historischen Einführung und Anwendungsbeispielen im Bereich der Wissenschaft und im industriellen Einsatz. Danach werden systematische die verschiedenen marin-geophysikalischen Methoden und Instrumente erläutert. Diese umfassen die aktive marine Seismik (Reflexionsseismik und Refraktionsseismik), die marine Potentialfeldmethoden, und schließlich Meeresbodenkartierungen mit Hilfe von Fächerecholoten und Seitensichtssonaren. Das letzte Drittel der Vorlesung besteht aus der Auswertung eines 3D seismischen Datensatzes. In diesem Teil der Vorlesung werden generelle Interpretationskonzepte und der Umgang mit interaktiven seismischen Interpretationsprogrammen gelehrt. Dies sind fundamentale Fähigkeiten, die Geophysikern im späteren Beruf immer wieder begegnen.

Lernziele

Die Studierenden entwickeln in dem Modul die folgenden fachlichen Fähigkeiten. Zunächst wird ein Überblick über die verschiedenen Methoden sowie deren Stärken und Schwächen vermittelt. Des Weiteren sollen die Studierenden genügend grundlegendes Verständnis dieser Methoden erarbeiten, dass sie an der anschließenden Praktikumsausfahrt teilnehmen können. Schließlich sollen die Studierenden praktische Erfahrung mit der Auswertung von 3D seismischen Daten erlangen, was eine der wichtigsten Fertigkeiten im Berufsleben eines Geophysikers darstellt.

Literatur

Yilmaz, Seismic data analysis, SEG

Telford, Sheriff, Geldart, Applied geophysics, Cambridge

Weitere Angaben*

Teilnahme an diesem Modul ist Voraussetzung zur Teilnahme an der marin-geophysikalischen Ausfahrt mit dem Forschungsschiff (pherPraG)

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Wahlpflicht	4
Ozeanographie - Geophysik	wanipilich	4

geopAGP03-01a Seismik

Titel	Modulcode
Seismik	geopAGP03-01a
Modulverantwortliche/r	
Prof. Dr. Wolfgang Rabbel	
Veranstalter	
Institut für Geowissenschaften	
Fakultät	
Mathematisch-Naturwissenschaftliche Fakultät	
Prüfungsamt	
Prüfungsamt Geographie und Geowissenschaften	

Status (P / WP / W)	WP
Leistungspunkte	6
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	alle zwei Semester, im Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	180 Stunden
Präsenzstudium	52 Stunden
Selbststudium	128 Stunden

Lehrsprache	Deutsch (bei Bedarf Englisch)	
Zugangsvoraussetzung laut	keine	
Prüfungsordnung	itomo	
	geopEGPH Einführung in die Geophysik Teil 1 und 2,	
	geop-NGP0 Einführung in Matlab.	
	Der Kurs erfordert Vorkenntnisse in Mathematik, Physik,	
Empfohlene Zugangsvoraussetzung*	Geologie und Geophysik, die in den im OLAT	
	bereitgestellten Kursunterlagen ausführlich beschrieben	
	sind. Für die Übungen sind Kenntnisse in Matlab	
	erforderlich.	

Modulveranstaltung(en)						
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahlpflicht/Wahl	sws		
Vorlesung	Seismik		Pflicht	3		
Übungen	Übung zur S	Seismik	Pflicht	1		
Weitere Bemerkungen zu der/den		Es wird ein (freiwilliges) Tutorium angeboten				
Modulveranstaltung(en)*						
Voraussetzungen für die Zulassung						
zu der/den Prüfung(en) (Vorleis-		Mehr als 50% der Übungen erfolgreich absolviert				
tungen)*						

Prüfung(en)					
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht	
Seismik	Mündlich oder Bericht	benotet	Pflicht	100%	
Weitere Bemerkungen zu der/den Prüfung(en)*					

Kurzzusammenfassung*

Der Kurs ist eine Einführung in die Seismik als Explorationsmethode, die zum Beispiel für die Erkundung und Überwachung von Kohlenwasserstoff-Lagerstätten, geothermischen Reservoiren, unterirdischen Energiespeichern und Grundwasserleitern eingesetzt wird.

Lehrinhalte

Der Kurs besteht aus Vorlesung und Übungen. Er gliedert sich in die folgenden Abschnitte:

Allgemeine Einleitung: Ziele und Potenzial der seismischen Exploration

Theoretische Grundlagen der seismischen Wellenausbreitung: Bewegungsgleichung, Hookesches Gesetz, Wellengleichung, Eikonalgleichung, seismische Wellentypen, Ray-tracing, Snelliussches Brechungsgesetz, seismische Signalamplituden nach der Strahlenmethode (geometrisches Spreading, Reflexions-/Transmissionskoeffizienten, Absorption)

Seismische Geschwindigkeiten von Gesteinen: Einfache Gesteinsmodelle (Voigt-Reuss.Hill-Mittelung, Zeitmittel-Gleichung, Gassmann-Gleichung, Konzept des effektiven Drucks) und empirische Befunde für kristallines Festgestein und Sedimente.

Grundlagen der digitalen seismischen Datenbearbeitung: Fourier transformation, Konvolution, Korrelation

Reflexionsseismik: Common-midpoint Methode, statische Korrekturen, Frequenz- und Frequenz- Wellenzahl-Filter, Dekonvolution, Verstärkungsfunktionen, Normal-moveout-Korrektur, Geschwindigkeitsanalyse, Stapelung, Residualstatik, Bildgebungsverfahren: post-stack und prestack Migration.

Lernziele

Die Lernziele des Moduls sind methodischer Art: Die Studierenden haben die wissenschaftliche Grundlagen und Struktur der seismischen Explorationsmethode kennengelernt, einen Überblick über Möglichkeiten und Grenzen der Anwendung gewonnen und Erfahrungen in der Analyse seismischer Wellenausbreitung, im Lösen numerischer Probleme und in der Erstellung von wissenschaftlichen Graphiken unter Verwendung von Computer-Programmiersprachen gesammelt.

Literatur

Sheriff & Geldart, Exploration Seismology, Cambridge Univ. Press Keary, Brooks & Hill, An introduction to geophysical exploration, Wiley

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Wahlpflicht	5
Ozeanographie - Geophysik	vvariipilioni	5

geopAGP02 Geoelektrik-EMI-GPR

Titel	Modulcode
Geoelektrik-EMI-GPR	geopAGP02
Modulverantwortliche/r	
Dr. Martin Thorwart	
Veranstalter	
Institut für Geowissenschaften	
Fakultät	
Mathematisch-Naturwissenschaftliche Fakultät	
Prüfungsamt	
Prüfungsamt Geographie und Geowissenschaften	

Status (P / WP / W)	WP
Leistungspunkte	6
Bewertung (benotet/unbenotet)	Benotet
Dauer	ein Semester
Angebotshäufigkeit	alle zwei Semester, im Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	180 Stunden
Präsenzstudium	52 Stunden
Selbststudium	128 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut Prüfungsordnung	keine
Empfohlene Zugangsvoraussetzung*	geopEGPH Einführung in die Geophysik Teil 1 und 2

Modulveranstaltung(en)						
Lehrveranstaltungsform	Lehrveranstaltungstitel		Pflicht/Wahlpflicht/Wahl	SWS		
Vorlesung	Geoelektrik-	EMI-GPR	Pflicht	3		
Übung	Übung zu G	eoelektrik-EMI-GPR	Pflicht	1		
Weitere Bemerkungen zu d	ler/den		·	•		
Modulveranstaltung(en)*						
Voraussetzungen für die Z	ulassung					
zu der/den Prüfung(en) (Vorleis-		Erfolgreiche Lösung der	⁻ Übungsaufgaben.			
tungen)*						

Prüfung(en)					
Prüfungstitel	Prüfungsform	1	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Geoelektrik-EMI-GPR	mündlich		Benotet	Pflicht	100%
Weitere Bemerkungen zu der/den				•	
Prüfung(en)*		keine	;		

Kurzzusammenfassung*

Der Kurs erklärt die Theorie, Methodik und Anwendung der Geoelektrik, elektromagnetische Induktion (EMI) und Ground Penetrating Radar. Dies beinhaltet die Herleitung der wichtigsten Formeln, Erläuterungen der Mess- und Auswerteverfahren, Diskussion und Interpretation der Messergebnisse. Die Vorlesung wird ergänzt durch Übungen, in denen das in der Vorlesung vorgestellten Themen angewendet werden.

Lehrinhalte

- Elektrische Leitung im Untergrund
- Grundlagen der Geoelektrik
- Messkonfigurationen und Auswerteverfahren der Geoelektrik
- Induzierte Polarisation
- Grundlagen der elektromagnetischen Induktion (Maxwell-Gleichungen)
- Quellen & Empfänger in der EMI
- Auswertung des Impedanztensors
- Grundlagen des Ground Penetrating Radars
- CMP-Messung, Zero-Offset-Messung
- Geschwindigkeitsanalyse

Lernziele

Die Studierenden haben die Fähigkeiten zur selbständigen Erhebung von geoelektrischen und elektromagnetischen Daten erworben.

Die Studierenden besitzen eine umfassende Kenntnis der Theorie der Methoden der geoelektrischen und elektromagnetischen Messverfahren.

Die Studierenden haben die Schritte der digitalen Bearbeitung und Aufarbeitung der geoelektrischen und elektromagnetischen Daten erlernt.

Die Studierenden haben Kompetenzen in der Auswertung und Interpretation der geoelektrischen und elektromagnetischen Daten erworben.

Literatur

Telford, Geldart, Sheriff: Applied Geophysics, Cambridge University Press

Kearey, Brooks, Hill: An Introduction to Geophysical Exploration, Blackwell Publishing

Parasnis: Principles of Applied Geophysics, Chapman & Hall

Beblo: Umweltgeophysik, Ernst & Sohn

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Wahlpflicht	5
Ozeanographie - Geophysik	vvariipilicrit	5

Meteorologie

Titel

pherSynop Angewandte Synoptik

Angewandte Synoptik	pherSynop
Modulverantwortliche/r	·
Dr. Nadine Mengis	
Veranstalter	
GEOMAR Helmholtz-Zentrum für Ozeanfo	orschung
Fakultät	
Mathematisch-Naturwissenschaftliche Fal	kultät
Prüfungsamt	
Prüfungsamt Geographie und Geowissen	schaften
C4-4 (D / 14/D / 14/)	MAID
Status (P / WP / W)	WP
Leistungspunkte	6
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	alle zwei Semester, in jedem Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	180 Stunden
Präsenzstudium	52 Stunden
Selbststudium	128 Stunden
Lehrsprache	Deutsch
Zugangsvoraussetzung laut	
Prüfungsordnung	keine
Empfohlene Zugangsvoraussetzung*	pherEM, pherIPO
	· ·

Modulcode

Modulveranstaltung(en)						
Lehrveranstaltungsform	Lehrveranstaltungstitel		Pflicht/Wahlpflicht/Wahl	sws		
Vorlesung	Angewandte	Synoptik	Pflicht	2		
Praktische Übung	Angewandte	Synoptik	Pflicht	2		
Weitere Bemerkungen zu d	ler/den					
Modulveranstaltung(en)*						
zu der/den Prüfung(en) (Vorleis-		Erfolgreiche Lösung de einer Wetterbesprechu	er Übungsaufgaben und Präser ıng.	ıtation		

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Angewandte		Benotet	Pflicht	100%
Synoptik	Mündlich	Denoter	Filicht	10076
Weitere Bemerkungen	zu der/den			
Prüfung(en)*				

Kurzzusammenfassung*
Lehrinhalte
Grundlagen der Wettervorhersage, Beobachtungstechniken, Wetterkarten, Grundlagen der Dynamik,

Frontalzonen und Luftmassen, Strahlströme, Allg. Zirkulation mit Schwerpunkt auf den Hoch- und Tiefdruckgebieten der mittleren Breiten, Grundgleichungen in p-Koordinaten, Konvektion, Vorticity-, Tendenz- und Omegagleichung

Lernziele

Die Studierenden kennen die Grundlagen der Wetteranalyse und -prognose, von den Beobachtungen, der Aufbereitung und Darstellung der verschiedenen Parameter bis hin zu den damit verbundenen physikalischen Prozessen.

Die Studierenden haben erlernt, die synoptischen Karten in verschiedenen Niveaus mit den für das Wetter und seine Entwicklung bedeutsamen Prozessen zu verknüpfen.

Die Studierenden haben Kenntnisse der numerischen Modelle der synoptischen Meteorologie erworben.

Sie sind in der Lage ihre Kenntnisse in der Praxis der Wetteranalyse und -prognose anzuwenden. Sie besitzen eine umfassende Kenntnis der physikalischen Grundlagen der Wettervorhersage. In den Übungen haben sie die Sachkompetenz in der Aufbereitung der Daten für Analysezwecke, der Anwendung der physikalischen Gleichungen für Zwecke der Wettervorhersage und der Erstellung einer Prognose für die kommenden Tage erworben.

Literatur

DWD, 1987: Allgemeine Meteorologie, Leitfaden für die Ausbildung im Deutschen Wetterdienst Nr. 1, pp. 181

Roedel, Walter, 2000: Physik unserer Umwelt: Die Atmosphäre, Springer Verlag, pp. 498 Liljequist, Gösta H. und Konrad Cehak, 1984 Allgemeine Meteorologie. Springer-Verlag, pp. 396 Kurz, 1990: Synoptische Meteorologie, DWD Offenbach, pp. 197

Weitere Angaben

Alternativ: im 3. Semester oder im 5. Semester

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie - Ozeanographie - Geophysik,	Wahlpflicht	3 oder 5
Bachelor, 1-Fach, Geographie	Wahlpflicht	-

pherAKphys Atmosphären- und Klimaphysik

Titel	Modulcode	
Atmosphären- und Klimaphysik	pherAKphys	
Modulverantwortliche/r	·	
Dr. Nadine Mengis		
Veranstalter		
Helmholtz-Zentrum für Ozeanforschung (GEOMAR)		
Fakultät		
Mathematisch-Naturwissenschaftliche Fakultät		
Prüfungsamt		
Prüfungsamt Geographie und Geowissenschaften		

Status (P / WP / W)	WP
Leistungspunkte	6
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	Alle zwei Semester, im Sommersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	180 Stunden
Präsenzstudium	52 Stunden
Selbststudium	128 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut	keine
Prüfungsordnung	Refile
Empfohlene Zugangsvoraussetzung*	pherEM, pherIPO

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahlpflicht/Wahl	sws
Vorlesung	Atmosphäre	n- und Klimaphysik	Pflicht	2
Übung	Atmosphäre	n- und Klimaphysik	Pflicht	2
Weitere Bemerkungen zu d	der/den		•	
Modulveranstaltung(en)*				
Voraussetzungen für die Zulassung		Erfolgreiche Lösung der	Ühungaaufgahan	
zu der/den Prüfung(en) (Vo	orleis-	Enoigreiche Losung der	Obungsauigaben.	
tungen)*				

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Atmosphärenphysik	Klausur oder mündlich	Benotet	Pflicht	100%
Weitere Bemerkunge	n zu der/den			
Prüfung(en)*				

Kurzzusammenfassung*

Die Studenten sollen einen Überblick über die wichtigsten physikalischen Eigenschaften der Atmosphäre und des Klimas bekommen. Das beinhaltet einen Überblick sowohl über die Grundlagen der Klimadynamik wie auch der Strahlung, die für ein Verständnis der Komponenten des Klimasystems und der Allgemeinen Zirkulation der Atmosphäre benötigt werden.

Lehrinhalte

Strahlungsgesetze, Energiebilanz aus Beobachtungen, einfache Energiebilanzmodelle, Allgemeine Zirkulation der Atmosphäre, Stochastisches Klimamodell, Wetter- und Klimavorhersagbarkeit

Lernziele

Die Studierenden haben ein Verständnis der physikalischen und dynamischen atmosphärischen und klimatischen Prozesse erlangt und sind in der Lage, die Grundlagen der Wetter- und Klimamodelle wie auch der Vorhersagbarkeit in der Atmosphäre nachzuvollziehen.

Literatur

Peixoto, J.P. und A.H. Oort, 1992: Physics of Climate, American Institute of Physics, New York, pp.520 Holton, J., 2004: An introduction to dynamic meteorology, Academic Press, 535 pp.

Wallace, J.M. and P.V. Hobbs, 2006: Atmospheric science: an introductory survey, Academic Press, 2nd edition, 483pp.

Hasselmann, K. 1976: Stochastic climate model. Part I: Theory. Tellus, 6, 473–485

Weitere Angaben

Alternativ: im 4. Semester oder im 6. Semester

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie - Ozeanographie - Geophysik	Wahlpflicht	4 oder 6
Bachelor, 1-Fach, Geographie	Wahlpflicht	-

Ozeanographie

pherPhysOz Physik des Ozeans

Titel	Modulcode
Physik des Ozeans	pherPhysOz
Modulverantwortliche/r	
Prof. Dr. Peter Brandt	
Veranstalter	
GEOMAR Helmholtz-Zentrum für Ozeanforschung	
Fakultät	
Mathematisch-Naturwissenschaftliche Fakultät	
Prüfungsamt	
Prüfungsamt Geographie und Geowissenschaften	

Status (P / WP / W)	WP
Leistungspunkte	12
Bewertung (benotet/unbenotet)	benotet
Dauer	zwei Semester
	Regionale Ozeanographie: alle zwei Semester, im WS
Angebotshäufigkeit	Ozeanphysik: alle zwei Semester, im SS
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	360 Stunden
Präsenzstudium	104 Stunden
Selbststudium	256 Stunden

Lehrsprache	Deutsch/Englisch
Zugangsvoraussetzung laut Prüfungsordnung	keine
Empfohlene Zugangsvoraussetzung*	pherEM, pherIPO

Modulveranstaltun	<u> </u>			
Lehrveranstaltung	sform Lehrverans	staltungstitel	Pflicht/Wahlpflicht/Wahl	SWS
Vorlesung	Regionale (Ozeanographie	Pflicht	2
Übung	Regionale (Ozeanographie	Pflicht	2
Vorlesung	Ozeanphys	ik	Pflicht	2
Übung	Ozeanphys	ik	Pflicht	2
Weitere Bemerkun	gen zu der/den		<u> </u>	
Modulveranstaltun	g(en)*			
Voraussetzungen 1	ür die Zulassung			
zu der/den Prüfung	g(en) (Vorleis-	Erfolgreiche Lösung	der Übungsaufgaben.	
tungen)*				

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Physik des Ozeans	Mündlich	Benotet	Pflicht	100%
Weitere Bemerkungen	zu der/den		•	•
Prüfung(en)*				

	ŀ	(urzz	usan	nmer	าfass	ung*
--	---	---------------	------	------	-------	------

Lehrinhalte

Thermodynamische, akustische, elektromagnetische und optische Eigenschaften des Meerwassers, thermodynamisches Potential, Salzgehalt, Dichte, Schichtung, interne Wellen, Doppeldiffusion, Schallausbreitung, Brechung, Reflexion und Streuung akustischer Wellen, Strömungen im Erdmagnetfeld, elektromagnetischer Wellen, Optik

Kräfte, einfache Kräftegleichgewichte, Windantrieb, Ekman, Sverdrup, Vorticitybilanz, westliche Randströme, Subpolar-, Subtropenwirbel, äquatoriale Zirkulation, Subduktion und Auftrieb, Wärme- und Frischwasserflüsse, Wassermassen der Warm- und Kaltwassersphäre, Tiefenwasserbildung, Konvektion, Overflows, tiefe westliche Randströme, Thermohaline Zirkulation

Lernziele

Die Studenten lernen die physikalischen Eigenschaften des Meerwassers sowie die Grundlagen der Dynamik und Thermodynamik des Ozeans kennen. Sie sind in der Lage, mathematische Methoden zum Bearbeiten physikalischer Fragestellungen in der Ozeanographie anzuwenden.

Literatur

Medwin, H. and colleagues, 2005: Sounds in the Sea. Cambridge University Press, 643 pp.

Apel, J.R., 1988: Principle of Ocean Physics. International Geophysics Series, Vol. 38, Academic Press, Fifth printing 1999, 634 pp.

Talley, L.D., Pickard, G.L., Emery, W.J. and J.H. Swift, 2011: Descriptive Physical Oceanography: An Introduction (Sixth Edition), Elsevier, Boston, 560 pp.

Pond, S., and G.L. Pickard, 1983: Introductory Dynamical Oceanography, Butterworth-Heinemann, reprinted with corrections 1986, 1989, 329 pp.

Gill, A.E., 1982: Atmosphere – Ocean Dynamics. International Geophysics Series, Vol. 30m Academic Press, 662pp.

Peixoto, J.P. and A.H. Oort, 1992: Physics of Climate. Springer-Verlag New York, Inc., 520pp.

Weitere Angaben*

Die Reihenfolge der beiden Modulteile ist vertauschbar.

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	systems: Meteorologie - Wahlpflicht	
Ozeanographie - Geophysik	VVariipiliciti	4 & 5
Bachelor, 1-Fach, Geographie	Wahlpflicht	-

pherPhysOza-01a Regionale Ozeanographie

Titel		Modulcode
Regionale Ozeanographie		pherPhysOza-01a
Modulverantwortliche/r		
Prof. Dr. Peter Brandt		
Veranstalter		
GEOMAR Helmholtz-Zentrum für Ozeanfo	orschung	
Fakultät		
Mathematisch-Naturwissenschaftliche Fal	kultät	
Prüfungsamt		
Prüfungsamt Geographie und Geowissen	schaften	
-		
Status (P / WP / W)	WP	·
Loietungenunkto	6	

Status (P / WP / W)	WP
Leistungspunkte	6
Bewertung (benotet/unbenotet)	benotet
Dauer	einSemester
Angebotshäufigkeit	alle zwei Semester, im WS
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	180 Stunden
Präsenzstudium	52 Stunden
Selbststudium	128 Stunden

Lehrsprache	Deutsch/Englisch	
Zugangsvoraussetzung laut	keine	
Prüfungsordnung	Relite	
Empfohlene Zugangsvoraussetzung*	pherEM, pherIPO	

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahlpflicht/Wahl	sws
Vorlesung	Regionale O	zeanographie	Pflicht	2
Übung	Regionale O	zeanographie	Pflicht	2
Weitere Bemerkungen zu	der/den		•	
Modulveranstaltung(en)*				
Voraussetzungen für die Z	Zulassung			
zu der/den Prüfung(en) (Vorleis-tun-		Erfolgreiche Lösung der	Übungsaufgaben.	
gen)*				

Prüfung(en)					
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht	
Regionale Ozeanogra-	Mündlich	Benotet	Pflicht	100%	
phie	Mullullell	Denotet	Fillorit	100 %	
Weitere Bemerkungen	zu der/den				
Prüfung(en)*					

Kurzzusammenfassung*	
_ehrinhalte	

Kräfte, einfache Kräftegleichgewichte, Windantrieb, Ekman, Sverdrup, Vorticitybilanz, westliche Randströme, Subpolar-, Subtropenwirbel, äquatoriale Zirkulation, Subduktion und Auftrieb, Wärme- und Frischwasserflüsse, Wassermassen der Warm- und Kaltwassersphäre, Tiefenwasserbildung, Konvektion, Overflows, tiefe westliche Randströme, Thermohaline Zirkulation

Lernziele

Die Studenten lernen die physikalischen Eigenschaften des Meerwassers sowie die Grundlagen der Dynamik und Thermodynamik des Ozeans kennen. Sie sind in der Lage, mathematische Methoden zum Bearbeiten physikalischer Fragestellungen in der Ozeanographie anzuwenden.

Literatur

Medwin, H. and colleagues, 2005: Sounds in the Sea. Cambridge University Press, 643 pp.

Apel, J.R., 1988: Principle of Ocean Physics. International Geophysics Series, Vol. 38, Academic Press, Fifth printing 1999, 634 pp.

Talley, L.D., Pickard, G.L., Emery, W.J. and J.H. Swift, 2011: Descriptive Physical Oceanography: An Introduction (Sixth Edition), Elsevier, Boston, 560 pp.

Pond, S., and G.L. Pickard, 1983: Introductory Dynamical Oceanography, Butterworth-Heinemann, reprinted with corrections 1986, 1989, 329 pp.

Gill, A.E., 1982: Atmosphere – Ocean Dynamics. International Geophysics Series, Vol. 30m Academic Press, 662pp.

Peixoto, J.P. and A.H. Oort, 1992: Physics of Climate. Springer-Verlag New York, Inc., 520pp.

Weitere Angaben*

Verwendbarkeit des Moduls		
Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie - Ozea- nographie - Geophysik	Wahlpflicht	3 oder 5
Bachelor, 1-Fach, Geographie	Wahlpflicht	_

pherPhysOzb-01a Ozeanphysik

Titel				Modulcode		
Ozeanphysik		pherPhysOzb-01a				
Modulverantwortliche/r				•		
Prof. Dr. Peter Brandt						
Veranstalter						
GEOMAR Helmholtz-Zentrum für Ozeanfo	orschung					
Fakultät						
Mathematisch-Naturwissenschaftliche Fal	kultät					
Prüfungsamt						
Prüfungsamt Geographie und Geowissen	schaften					
Status (P / WP / W)	WP					
Leistungspunkte	6					
Bewertung (benotet/unbenotet)	benotet					
Dauer	ein Seme	ster				
Angebotshäufigkeit	alle zwei	Semeste	r, im S	S		
Arbeitsaufwand pro Leistungspunkt	30 Stunde	en				
Arbeitsaufwand insgesamt 180 Stunden						
Präsenzstudium	52 Stunde	en				
Selbststudium 128 Stunden						
Lehrsprache Deutsch						
Zugangsvoraussetzung laut	keine					
Prüfungsordnung	Kelile					
Empfohlene Zugangsvoraussetzung*	praussetzung* pherEM, pherIPO					
Modulveranstaltung(en)						
Lehrveranstaltungsform Lehrveranst	altungstite	I		Pflicht/Wahlpflicht/V	Vahl	sws
Vorlesung Ozeanphysik	(Pflicht		2
Übung Ozeanphysik	(Pflicht		2
Weitere Bemerkungen zu der/den						
Modulveranstaltung(en)*						
Voraussetzungen für die Zulassung						
• , , ,	Erfolgreiche	Lösung	der Üb	oungsaufgaben.		
gen)*						
Prüfung(en)						
Prüfungstitel Prüfungsform	Bewertu	ıng	Pflicht/Wahlpflicht/Wahl		Gew	icht
Ozeanphysik Mündlich	Benotet Pflicht		cht 100%		o o	
Weitere Bemerkungen zu der/den	1		1		1	
Prüfung(en)*						
Kurzzusammenfassung*						

Thermodynamische, akustische, elektromagnetische und optische Eigenschaften des Meerwassers, thermodynamisches Potential, Salzgehalt, Dichte, Schichtung, interne Wellen, Doppeldiffusion, Schallausbreitung, Brechung, Reflexion und Streuung akustischer Wellen, Strömungen im Erdmagnetfeld, elektromagnetischer Wellen, Optik

Lernziele

Die Studenten lernen die physikalischen Eigenschaften des Meerwassers sowie die Grundlagen der Dynamik und Thermodynamik des Ozeans kennen. Sie sind in der Lage, mathematische Methoden zum Bearbeiten physikalischer Fragestellungen in der Ozeanographie anzuwenden.

Literatur

Medwin, H. and colleagues, 2005: Sounds in the Sea. Cambridge University Press, 643 pp.

Apel, J.R., 1988: Principle of Ocean Physics. International Geophysics Series, Vol. 38, Academic Press, Fifth printing 1999, 634 pp.

Talley, L.D., Pickard, G.L., Emery, W.J. and J.H. Swift, 2011: Descriptive Physical Oceanography: An Introduction (Sixth Edition), Elsevier, Boston, 560 pp.

Pond, S., and G.L. Pickard, 1983: Introductory Dynamical Oceanography, Butterworth-Heinemann, reprinted with corrections 1986, 1989, 329 pp.

Gill, A.E., 1982: Atmosphere – Ocean Dynamics. International Geophysics Series, Vol. 30m Academic Press, 662pp.

Peixoto, J.P. and A.H. Oort, 1992: Physics of Climate. Springer-Verlag New York, Inc., 520pp.

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie - Ozea- nographie - Geophysik	Wahlpflicht	4
Bachelor, 1-Fach, Geographie	Wahlpflicht	-

Meteorologie & Ozeanographie pherAOD Atmosphären- und Ozeandynamik

Titel	Modulcode	
Atmosphären- und Ozeandynamik	pherAOD	
Modulverantwortliche/r	·	
Prof. Dr. Arne Biastoch		
Veranstalter		
GEOMAR Helmholtz-Zentrum für Ozeanforschung		
Fakultät		
Mathematisch-Naturwissenschaftliche Fakultät		
Prüfungsamt		
Prüfungsamt Geographie und Geowissenschaften		

Status (P / WP / W)	WP
Leistungspunkte	12
Bewertung (benotet/unbenotet)	benotet
Dauer	zwei Semester
Angebotshäufigkeit	AOD I: alle zwei Semester, im SS
	AOD II: alle zwei Semester, im WS
Arbeitsaufwand pro Leistungspunkt 30 Stunden	
Arbeitsaufwand insgesamt	360 Stunden
Präsenzstudium	104 Stunden
Selbststudium	256 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut	keine
Prüfungsordnung	Relite
Empfohlene Zugangsvoraussetzung*	Mathematik und Physik Module 13.Sem., pherEM,
Emplomene Zugangsvoraussetzung	pherIPO, pherDGL

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrveranstaltungstitel		Pflicht/Wahlpflicht/Wahl	sws
Vorlesung	Atmosphäre	n- und Ozeandynamik I	Pflicht	2
Übung	Atmosphäre	n- und Ozeandynamik I	Pflicht	2
Vorlesung	Atmosphäre	n- und Ozeandynamik II	Pflicht	2
Übung	Atmosphären- und Ozeandynamik II		Pflicht	2
Weitere Bemerkungen zu der/den			<u> </u>	
Modulveranstaltung(en)*				
Voraussetzungen für die Zulassung				
zu der/den Prüfung(en) (Vorleis-		Erfolgreiche Bearbeitung	der Übungsaufgaben	
tungen)*				

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Atmosphären-	Mündlich	Benotet	Pflicht	100%
und Ozeandynamik				
Weitere Bemerkungen zu der/den Eine Prüfung am Ende des zweisemestrigen Moduls.				

Prüfung(en)*	

Kurzzusammenfassung*

Lehrinhalte

Mathematische Grundlagen, Rolle von Ozean und Atmosphäre im Klimasystem, Hydrodynamisches Gleichungssystem und Randbedingungen, Einflüsse der Erdrotation (Corioliskraft, Trägheitswellen, Geostrophie, Thermischer Wind), Wellen in Atmosphäre und Ozean (externe und interne Schwerewellen), Turbulente Flüsse und Grenzschichten (Reynoldsmittelung, Parametrisierung, Ekman), Dynamik geostrophischer Bewegungen (Rossbywellen, Vorticity- und Sverdrupbalance, Theorien zur windgetriebenen Zirkulation)

Lernziele

Die Studierenden kennen die Grundelemente der geophysikalischen Hydrodynamik. Sie haben die theoretisch-mathematischen Grundlagen der Beschreibung von Strömungen und Wellen erlernt und ein Verständnis wesentlicher Elemente der Zirkulation von Atmosphäre und Ozean entwickelt.

Literatur

Marshall and Plumb: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text. Elsevier Academic Press, 2008

Cushman-Roisin and Beckers: Introduction to Geophysical Fluid Dynamics, Physical and Numerical Aspects. Elsevier Academic Press, 2012

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Physik des Erdsystems: Meteorologie -	Wahlpflicht	4 & 5
Ozeanographie - Geophysik	wampilion	4 & 3

pherEMnf-01a Einführung in die Meteorologie für Nebenfächler

Titel	Modulcode
Einführung in die Meteorologie für Nebenfächler	pherEMnf-01a
Modulverantwortliche/r	
Dr. Nadine Mengis	
Veranstalter	
GEOMAR Helmholtz-Zentrum für Ozeanforschung	
Fakultät	
Mathematisch-Naturwissenschaftliche Fakultät	
Prüfungsamt	
Prüfungsamt Geographie und Geowissenschaften	

Status (P / WP / W)	P
Leistungspunkte	5
Bewertung (benotet/unbenotet)	benotet
Dauer	ein Semester
Angebotshäufigkeit	in jedem Wintersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	150 Stunden
Präsenzstudium	26 Stunden
Selbststudium	124 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut	keine
Prüfungsordnung	Refile
Empfohlene Zugangsvoraussetzung*	

Modulveranstaltung(en)				
Lehrveranstaltungsform	Lehrverans	taltungstitel	Pflicht/Wahlpflicht/Wahl	SWS
Vorlesung	Einführung N	Meteorologie	Pflicht	2
Weitere Bemerkungen zu o	ler/den		•	
Modulveranstaltung(en)*				
Voraussetzungen für die Z	ulassung			
zu der/den Prüfung(en) (Vo	rleis-			
tungen)*				

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Einführung Meteorologie	Klausur	benotet	Pflicht	100%
Weitere Bemerkungen zu	der/den	<u>.</u>	•	
Prüfung(en)*				

Prutung(en) [*]	
Kurzzusammenfassung*	

Lehrinhalte

Wetter und Klima, Aufbau der Atmosphäre, meteorologische Zustandsgrößen, atmosphärische Statik, Thermodynamik, atmosphärische Strahlung, Wasser in der Atmosphäre, Dynamik, Allgemeine Zirkulation, Regionale Phänomene

Lernziele

Die Studierenden haben das Grundwissen über die Struktur und Dynamik der Atmosphäre erworben. Sie sind in der Lage die wichtigsten physikalischen Mechanismen in der Atmosphäre zu verstehen und diese Kenntnisse in den fachlich vertiefenden Modulen der Meteorologie und Ozeanographie anzuwenden.

Literatur

Allgemeine Meteorologie, G.H. Liljequist, K. Cehak, Springer, unveränd. Nachdruck der 3. Auflage 1984

Die Atmosphäre der Erde, H. Kraus, 3. Aufl., 2004, Springer Heidelberg

Meteorologie, B. Klose, Springer, 1. Aufl., 2008

An Introduction to Dynamic Meteorology, J. Holton, G. Hakim, Academic Press, 2012

Globale Erwärmung, M. Latif, Ulmer UTB, 1. Aufl. 2012

Die Stratosphäre: Phänomene, Geschichte, Relevanz, K. Labitzke, Springer, 1999

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Geowissenschaften	Wahl	-
Bachelor, 1-Fach, Geographie	Wahlpflicht	-
Master, 1-Fach, Umweltgeographie und -management	Wahl	-

pherIPOnf-01a Introduction to Physical Oceanography for Minors

Module Name	Modul Code
Introduction to Physical Oceanography for Minors	pherIPOnf-01a
Module Coordinator	
Prof. Dr. Peter Brandt	
Organizer	
GEOMAR Helmholtz Centre for Ocean Research Kiel	
Fakulty	
Faculty of Mathematics and Natural Sciences	
Examination Office	
Examination Office Geosciences	

Status (C / CE / O)	C
ECTS Credits	5
Evaluation	graded
Duration	one Semester
Frequency	every summer semester
Workload per ECTS Credit	30 hours
Total Workload	150 hours
Contact Time	26 hours
Independent Study	124 hours

Teaching Language	English
Entry Requirements as Stated in the Examination Regulations	none
Recommended Requirements*	

Module Course(s)				
Course Type	Course Name		Compulsory/Compulsory elective/Optional	Credit hours
l ecture	Introduction to Oceanography	•	Compulsory	2
Further Information on the	Course(s)*			
Prerequisits for Admission Examination(s)*	to the			

Examination(s)				
Examination Name	Type of Examination	Evaluation	Compulsory/Compulsory elective/Optional	Weighting
Introduction to Physical Oceanography	Written Examination	Graded	Compulsory	100%
Further Information on t	he Examination(s)*		•	•

Short Summary*

Course Content

Topography of the sea bed, composition and physical properties of sea water and sea ice, sound, heat budget, mean sea salt stratification, characteristic water masses, wind induced ocean currents,

geostrophic currents, thermohaline circulation, regional oceanography, tides, ocean currents

Learning Outcomes

The students have developed a basic knowledge of the structure and dynamics of the ocean. They are able to understand the most important physical mechanisms in the ocean and to apply this knowledge in the study of subject-specific topics of the continuing modules of meteorology and physical oceanography.

Reading List

Talley, L.D., G.L. Pickard, W.J. Emery, J.H. Swift, 2011: Descriptive Physical Oceanography - An Introduction. Pergamon Press, 6th edition, 555 pp.

Bearman, G. (Ed.), 1989: Waves, tides and shallow-water processes. Pergamon Press, Oxford (Open Univ.), reprinted with corrections 1991,1995, 1997, 187 pp.

Bearman, G. (Ed.), 1989: Ocean circulation. Pergamon Press, Oxford (Open Univ.), reprinted with corrections 1998, 238 pp.

Bearman, G. (Ed.), 1998: The ocean basins: their structure and evolution.

Pergamon Press, Oxford (Open Univ.), 2nd edition, 185 pp.

Tomczak, M. and J.S. Godfrey, 1994: Regional Oceanography: An Introduction. Pergamon Press, 422 pp.

Additional Information*

Application of module

Application	Compulsory / Optional	Semester
Bachelor, 1-Fach, Geowissenschaften	Optional	-
Bachelor, 1-Fach, Geographie	Compulsory elective	-
Master, 1-Fach, Umweltgeographie und -management	Optional	-
Master, 1-Fach, Biological Oceanography	Compulsory	2
Master, 1-Fach, Marine Geosciences	Optional	

pherPraMMM-01a Messmethoden Meteorologie für Nebenfächler

Titel					Modulcode	
Messmethoden Me	Messmethoden Meteorologie für Nebenfächler				pherMMM-01a	
Modulverantwortl	iche/r				<u> </u>	
Dr. Nadine Mengis						
Veranstalter						
GEOMAR Helmhol	tz-Zentru	m für Ozeanfor	rsch	ung		
Fakultät						
Mathematisch-Natu	ırwissens	schaftliche Fakı	ultät			
Prüfungsamt						
Prüfungsamt Geog	raphie ur	nd Geowissens	chaf	ten		
Status (P / WP / W	/)		WP)		
Leistungspunkte			3			
Bewertung (benote	et/unbend	otet)	unb	enotet		
Dauer			ein	Semester		
Angebotshäufigk	Angebotshäufigkeit alle		alle	zwei Semester, im S	Sommersemester	
3-1		30 \$	30 Stunden			
Arbeitsaufwand insgesamt 90		90 3	90 Stunden			
Präsenzstudium 26			26 Stunden			
Selbststudium			64 \$	64 Stunden		
Lehrsprache			Deu	utsch		
Zugangsvorausse		ut	keine			
Prüfungsordnung			Keirie			
Empfohlene Zuga	ngsvora	ussetzung*	phe	erEMnf, pherWiss un	d pherData	
Modulveranstaltu	ng(en)					
Lehrveranstaltung		Lehrveransta	ltun	gstitel	Pflicht/Wahlpflicht/Wahl	sws
Vorlesung		Messmethode		~	Pflicht	2
Weitere Bemerkui	ngen zu	der/den		-		I
Modulveranstaltu	ng(en)*					
Voraussetzungen	für die Z	Zulassung zu				
der/den Prüfung(e	en) (Vorle	eis-tungen)*				
Prüfung(en)						
Prüfungstitel	Prüfunç	gsform		Bewertung	Pflicht/Wahlpflicht/Wahl	Gewic

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewic ht
Messmethoden	Mündliche	Unbenotet	Pflicht	100%
Meteorologie	Gruppenprüfung	Officerotet	FINCIL	100 /6
Weitere Bemerku	ıngen zu der/den			•
Prüfung(en)*				

Kurzzusammenfassung*		
Lehrinhalte		

Einführung in Verfahren zur Erfassung von Vorgängen im Erdsystem.

Lernziele

Die Studierenden kennen die Grundlagen der meteorologischen Messverfahren und ihrer Anwendung. Die Studierenden haben erlernt Messungen im Feld durchzuführen. Die Studierenden haben umfangreiche Kenntnisse in der Auswertung solcher Messungen erworben.

Sie sind in der Lage ein Messsystem aufzubauen und zu betreiben.

Sie besitzen eine umfassende Kenntnis der möglichen Fehlerquellen der unterschiedlichsten Messgeräte und ihrer Vermeidung.

Literatur

Rhinehart, R.E., 1997: Radar for meteorologists. Rhinehart Publications, U.S.A., 428 pp.

Sabins, F.F., 1996: Remote Sensing, U.S.A., 494 pp.

Emeis, S., 2010: Measurement Methods in Atmospheric Sciences. In Situ and Remote, Gebrüder Borntraeger, Stuttgart, Germany, 258 pp.

Weitere Angaben

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Geographie	Wahlpflicht	-

pherMMO-01a Messmethoden Ozeanographie für Nebenfächler

Titel	Modulcode	
Messmethoden Ozeanographie für Nebenfächler	pherMMO-01a	
Modulverantwortliche/r		
Prof. Dr. Peter Brandt		
Veranstalter		
GEOMAR Helmholtz-Zentrum für Ozeanforschung		
Fakultät		
Mathematisch-Naturwissenschaftliche Fakultät		
Prüfungsamt		
Prüfungsamt Geographie und Geowissenschaften		

Status (P / WP / W)	WP
Leistungspunkte	3
Bewertung (benotet/unbenotet)	Unbenotet
Dauer	ein Semester
Angebotshäufigkeit	alle zwei Semester, im Sommersemester
Arbeitsaufwand pro Leistungspunkt	30 Stunden
Arbeitsaufwand insgesamt	90 Stunden
Präsenzstudium	26 Stunden
Selbststudium	64 Stunden

Lehrsprache	Deutsch
Zugangsvoraussetzung laut	Keine
Prüfungsordnung	Reme
Empfohlene Zugangsvoraussetzung*	pherIPO, pherWiss und pherData

Modulveranstaltung(en)					
Lehrveranstaltungsform	Lehrveranstaltu	ngstitel	Pflicht/Wahlpflicht/Wahl	sws	
Vorlesung	Messmethoden der Ozeanographie		Pflicht	2	
Weitere Bemerkungen zu der/den Modulveranstaltung(en)*					
Voraussetzungen für die Zulassung zu der/den Prüfung(en) (Vorleis-tungen)*					

Prüfung(en)				
Prüfungstitel	Prüfungsform	Bewertung	Pflicht/Wahlpflicht/Wahl	Gewicht
Messmethoden	Mündliche	Unbenotet	Pflicht	100%
Ozeanographie	Gruppenprüfung	Officerioter		
Weitere Bemerkungen zu der/den				
Prüfung(en)*				

Kurzzusammenfassung*		
Lehrinhalte		
Einführung in Verfahren zur Erfassung von Vorgängen im Erdsystem.		
Lernziele		

Die Studierenden besitzen eine umfassende Sachkompetenz in der Durchführung von ozeanographischen Messverfahren, der Funktionsweise und Benutzung der Messgeräte, in der Planung und Aufnahme von Messdaten und in der Auswertung und Bewertung der gewonnenen Daten. Die Studierenden haben Grundkenntnisse von seegehenden Arbeitsabläufen erworben.

Literatur

Emery, W.J. and R.E. Thomson, 1998: data and their analysis methods in physical oceanography. 1st and 2nd eds., Pergamon Press, Amsterdam, 634 pp.

Stewart, R.H., (online publication), Introduction to Physical Oceanography,

http://oceanworld.tamu.edu/resources/ocng_textbook/contents.html

Weitere Angaben*

Verwendung	Pflicht/Wahl	Fachsemester
Bachelor, 1-Fach, Geographie	Wahlpflicht	-